
ENEE 739C: Advanced Topics in Signal Processing: Coding Theory
Instructor: Alexander Barg

Lecture 7 (draft; 10/14/03). Random matrices over finite fields. Erasure channel and its error exponent.
Complexity issues in coding theory.

http://www.enee.umd.edu/ ãbarg/ENEE739C/course.html

In lectures 3-6 we looked at decoding of codes from a probabilistic perspective, ignoring the constructive
aspect of our systems. Here we wish to change the point of view and study issues related to implementation
complexity of decoding of linear codes. We will start with a technical topic of independent interest: properties
of random matrices over Fq. The main use of these results will be in analysis of some decoding algorithms;
however we also point out another, unrelated direction which we can treat almost “for free”, that of the
reliability function of the erasure channel.

Let q be a prime power and let C be a linear q-ary [n, k] code. A k-subset of coordinates E = {i1, . . . , ik}
is called an information set (a message set) if all the qk codewords differ in these coordinates. In the notation
of the previous lecture, dim(CE) = k.

The question about the number Uk
k of information sets for a given code is difficult. Some bounds are

given in [5]; however, there are no general bounds which are very different from
(
n
k

)
. Our first goal will be

to explain the reason for this. In doing so, we will analyze the rank of random matrices over Fq.

What is the probability that a large square binary k × k matrix is nonsingular (over F2)? The answer is
given by

lim
k→∞

[k]k
2k2 =

∞∏
i=1

(1 − 2−i) ≈ 0.2888.

Remark. Generally, the probability that a large k × k matrix over Fq has rank k − c (corank c) falls very
rapidly as c grows. The following table shows this probability for 0 ≤ c ≤ 5:

q c 0 1 2 3 4 5
2 .2888 .5776 .1284 .0052 4.7× 10−5 9.7× 10−8

3 .5601 .4201 .0197 8.7× 10−5 4.1× 10−8 2.1× 10−12

5 .7603 .2376 .0021 6.7× 10−7 8.6× 10−12 4.4× 10−18

What is the expected corank (i.e., k − (rank)) of a k × k binary matrix? It is given by the sum
∑

c cπ(c),
where π(c) are given by the first row of this table. The answer is (very close to) 0.8502.

We will need a generalization of this argument, proved by a more detailed analysis. We begin with a
technical lemma.

Lemma 1. The number of m× � matrices of rank r equals[
m

r

][
�

r

]
[r]r .

Proof : Let M = F
m
q be an m-dimensional space and L ⊂ M be its �-dimensional subspace. We will count

the number of linear maps f : M → L of rank r. We have dim ker f = m − r, so the number of kernels
mapping is

[
m
r

]
. Further,

dim Imf = m− dimker f = r,

so the number of image subspaces L is
[
	
r

]
. Suppose the image and the kernel are fixed. Then to every choice

of the basis in Imf there corresponds exactly one matrix A with the needed properties, and there are [r]r
such choices.

Theorem 2. Let G be a k × n matrix over Fq with independent equiprobable entries. The probability that
it contains a k × k submatrix of rank ≤ �− 1 is

τn,k(�) <
(
n

k

)
q−(k−	)2 .

1
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Proof : By the previous lemma, the probability that G contains a k × k matrix of rank u equals

π(k, u) = q−k2
[
k

u

]2

[u]u =
u−1∏
j=0

(qk − qj)2

qu − qj
< q−k2+ku

u−1∏
j=0

qk−j − 1
qu−j − 1

The last product can be bounded above as[
k

u

]
<

u−1∏
j=0

qk−i

qu−i − 1
= qu(k−u)

u−1∏
j=0

qu−i

qu−i − 1

= qu(k−u)
u∏

i=1

(
1 +

1
qi − 1

)
.

Denote the last product by Π. We have

Π =
q

q − 1

(
1 +

1
q2 − 1

+ . . .
)

For q ≥ 2 the sum of the omitted terms is less than 1, so Π < 5. Then

π(k, u) < 5qu(k−u)−k2+ku = 5q−(k−u)2 .

Now let us use the union bound. For a given matrix G there are
(
n
k

)
choices of the k × k submatrix; thus,

the probability that there exists a submatrix A of rank rk(A) = u < � does not exceed

τn,k(�) ≤
k−	∑
u=0

5q−(k−u)2
(
n

k

)
= 5

(
n

k

)
q−(k−	)2

	−1∑
u=0

q−(k−u)2+(k−	)2

≤
{
u = �− i

}
≤ 5

(
n

k

)
q−(k−	)2

	∑
i=1

q−(i+1)2+1.

The last sum is maximum for q = 2. It can be checked not to exceed 0.2. This proved the claimed inequality.

Corollary 3. Let n →∞, k/n→ R > 0, c ≥ hq(R)/R. For almost all choices of G the rank of every k × k
submatrix is at least

k −
√
ck.

Proof : Let E ⊂ [n] be a k-subset. The probability that G contains a submatrix G(E) of rank ≤ �− 1 is at
most τn,k(�). Let k − � =

√
ck. Compute

logq τn,k(�) < −ck + logq

(
n

k

)
< −k

(
c− hq(R)

R

)
.

Thus for c > hq(R)/R the probability τn,k(�)→ 0 exponentially fast. In other words, for almost all matrices
G the rank of every k × k submatrix is ≥ k −√

ck.

By a variation on the above argument we can prove

Lemma 4. Let G be a k×n random matrix over Fq, n→∞, k/n fixed. Then with probability → 1 over the
choice of G every submatrix formed by k +O(

√
k) columns of G has rank k.

Lemma 5. Let G be as above. Then with probability → 1 every submatrix formed by k+ 2 logq n� cyclically
consecutive columns is nonsingular.

Erasure channel. Consider a memoryless binary-input channel W with X = {0, 1}, Y = {0, 1, ∗},
where ∗ represents erasure. The transition probabilities are given by P (a|a) = 1− p, P (∗|a) = p.

Let C be a binary [n, k] code and let x ∈ C be a codevector transmitted over W . Let E ⊂ {1, . . . , n} be
the subset of nonerased positions. The received vector y equals x on E. It is clear that if E contains an
information set of C, it is possible to decode correctly. Otherwise, if rk(G(E)) = k − i, then dim(CĒ) = i.
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There is a coset of H n
2 /CĒ in which every vector coincides with y on its nonerased positions, so any decoding

is very likely to miscorrect.

To summarize, max-likelihood decoding on the erasure channel is performed as follows: find c ∈ C which
is the unique closest codeword c ∈ C to y on the nonerased positions. If it does not exist, declare an error,
otherwise, output c.

Let Pe(C, p) be the error probability of decoding of C on W . As usual, define

E(n,R, p) = max
C[n,nR]

− 1
n
log2 Pe(C, p)

E(R, p) = lim
n→∞E(n,R, p).

Theorem 6.
E(R, p) ≥ D(1−R‖p).

Proof : Let C be an [n, k] random linear code and κ = k + O(
√
k). Let fs =

∑k−1
i=0 U i

n−s be the number of
subsets E of size n− s and rank rk(G(E)) ≤ k − 1. The error probability

Pe(C, p) =
n∑

e=1

fep
e(1− p)n−e.

By Theorem 2 with probability→ 1 over the choice of codes, fe = 0 for e < n−κ and fe =
(
n
e

)
for e ≥ n−κ.

Hence there exists a linear [n, nR] code C such that

Pe(C, p) =
n∑

e=n−κ

(
n

e

)
pe(1− p)n−e.

As long as np ≤ n− κ or p ≤ 1−R+ o(1), the exponent of Pe(C, p) for n→∞ is D(1−R‖p).

Note that this argument can also be viewed as an application of Lemma 3.2.

Thus, the capacity C ≥ 1− p. It should also be clear that C = 1− p because for k = Rn > n(1− p), with
probability bounded away from zero the received vector y will contain more than n− k erased positions, so
there always will be an ambiguity in decoding. An even stronger fact follows.

Fact to remember:

The critical rate of the channel is Rcrit = 0, and the entire error exponent is the “sphere packing bound”
which corresponds to the third case of the general theorems. This means that the reliability function of
the erasure channel is known for all rates 0 ≤ R ≤ C .

Complexity issues in coding theory. In this part we will look at the complexity of max-likelihood
decoding and related questions. Our source here is [1]. It is known that the problem of decoding of linear
codes in general is NP-hard (meaning that it is unlikely that a polynomial-time algorithm for the general
case of this problem exists). Let us take a look at a few basic results related to decoding complexity.

There are a few trivial algorithms: search over all codewords, finding the codeword c which minimizes the
distance d(y, c′) where y is the received vector and c′ ∈ C. The complexity of this decoding is O(2Rn). Or
we can decode by the standard array (listing coset leaders and their syndromes), the complexity is 2n(1−R).

(Give an example of the standard array: coset leaders, most probable vectors).

Can we do better in terms of complexity? Let C be a q-ary linear [n, k, d] code and let W be an information
set, i.e. a k-subset W ⊂ [n] such that rk(G(W )) = k. A codevector x can be uniquely restored from its
projection on W , for instance, by solving the system of linear equations

HxT = 0,

where the coordinates of x outside W are unknown. Denoting s = H(W )x(W )T , we have

H(W̄ )x(W̄ )T = s.
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Since 0 = k − rk(G(W )) = n − k − rk(H(W̄ )), the rank rk(H(W̄ )) = n − k, so the system has a unique
solution. This motivates the following decoding algorithm

Information set decoding (C,y)
• Set c = 0.
• Choose an information set W . Compute the codeword c′ such that c′(W ) = y(W ). If
d(c′,y) < d(c,y), assign c ← c′.
• Repeat for all information windows. Output c.

Theorem 7. The information set decoding algorithm performs ML decoding.

Proof : (see Homework 2)

It is possible to use information set decoding to perform bounded distance decoding (that is to correct
up to a certain multiplicity of errors). Choosing a small collection of information sets which will solve this
problem for a given code turns into a separate task. (Discuss the example of the [24, 12, 8] Golay code).

The following lemma shows that by giving up a little on the code performance we can indeed decode with
an exponentially smaller complexity. Given n, k, define (again) the GV distance

d0 = max
{
d :

d−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k

}
.

Lemma 8. [4] Let C be an [n, k] linear code and let d0 be the GV distance. Let pc = Pe(C, p) be the error
probability of ML decoding of C on a given BSC(p). Let pb be the error probability of bounded distance
decoding of C in the sphere of radius d0. Then pb ≤ 2pc.

Proof :

LLBB

n

q
E

Let L be the set of qn−k coset leaders. Every error pattern e outside L contributes to the error probability
pc:

(1) pc = Pr{e ∈ H n
q \ L}

For the error probability of bounded distance decoding we have
pb = Pr{e ∈ H n

q \ (B ∩ L)} = Pr{e ∈ H n
q \ L}+ Pr{e ∈ L \ (B ∩ L)}

≤ pc + Pr{e ∈ B \ (B ∩ L)}
The last inequality follows because |B| = |L| and B is formed by the most probable vectors. Finally, observe
that the last term describes a part of the event in (1), so its probability does not exceed pc.

Fact to remember:

Let C be an [n, k] linear code used on a BSC. Performing bounded distance decoding restricted to the
sphere of radius equal to the GV distance for the parameters n, k at most doubles the error probability
of complete ML decoding.
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Therefore, consider the following decoding algorithm. Let κ = k + 2 logq n�.

Sliding window decoding (C,y)
• Set c = 0, i = 1
• For a subset W = {i, i+ 1, i+ κ− 1} ⊂ [n] of (cyclically) consecutive indices repeat:

• For every error pattern e ∈ H κ
q of weight wt(e) ≤ �d0κ/n� reencode the

vector y(W ) − e to obtain a codeword c′. If d(c′,y) < d(c,y), assign c ← c′.

• Repeat the previous step for all i = 1, 2, . . . , n. Output c.

It is clear that if the weight of error wt(e) ≤ d0, one of the projections e(W ) will be of weight at most
�d0κ/n�. Furthermore, for almost all codes every submatrix G(W ) will have rank k. Moreover, for each W
we have to search over

�d0κ/n�∑
i=0

(
κ

i

)
(q − 1)i ≤ 2κhq(δGV) � 2κ(log2 q−R)

error patterns.

Hence we have

Theorem 9. [4] Almost all linear codes can be decoded with error probability p ≤ 2pc and complexity of
order O(n42nR(1−R logq 2)).

The complexity estimate in this theorem can be improved. We know that every k × k submatrix G(E)
of a random generator matrix G is of rank ≥ k − O(

√
k). In other words, for E ⊂ [n], |E| = k we have

dim(CE) ≥ k − O(
√
k). Thus the number of codewords project to the all-zero vector (or in general project

identically) on E does not exceed 2O(
√

k) (recall Thm. 6.1(ii): CE
∼= C/CĒ).

Let

Tn(k) = (n logn)
(
n

d0

)/(
n− k

d0

)
.

consider the following (probabilistic) algorithm:

Covering set decoding (C,y)
• Set c = 0.
• Choose randomly a k-subset W . Form a list of codewords L(W ) = {c ∈ C | c(W ) =
y(W )}.
• If there is a c′ ∈ L(W ) such that d(c′,y) < d(c,y), assign c ← c′.
• Repeat the last two steps Tn(k) times. Output c.

The properties of this algorithm are summarized as follows.

Theorem 10. [2, 7] For almost every choice of a linear code C, covering set decoding for almost all codes
has error probability ≤ 2pc(C)(1 + o(1)). Its implementation complexity has exponential order

exp2[n(h2(δGV)− (1−R)h2

( δGV

1−R

)
(1 + o(1))].

Proof : A decoding error can occur if the transmitted codeword is not the nearest one in the code to the
received word y, which happens with probability pc, or if the repeated choice fails to find an error-free k-set.
The probability that a randomly chosen k-set W is not error-free equals

1−
(
n− k

d0

)/(
n

d0

)
.
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Performing the choice independently Tn(k) times we observe that this probability falls as e−n log n. This
term declines faster than the error probability of minimum distance decoding pc; hence, its contribution to
the overall error rate is negligible. This proves the first part of our claim.

The complexity of each independent decoding attempt is formed by the time needed to diagonalize the
matrix G with respect to W , which takes at most n3 operations, and a number of linear-time subroutines.
Hence the overall complexity is at most O(n3Tn(k)|L(W )|).

This result is an improvement over the previous theorem (and both improve substantially over the trivial
complexity estimates) as seen from the following figure.

0.2 0.4 0.6 0.8 1
R

0.1

0.2

0.3

0.4

0.5

Complexity

This is not the end of the story: further improvements in complexity are possible (see [1]), although all
the known maximum likelihood decoding algorithms have exponentially growing implementation complexity.

Gradient-like decoding. Consider a general decoding procedure motivated by the concept of minimal
vectors from the previous lecture. Recall that for a given linear code C, D(0, C) denotes the Voronoi region
of zero. Call T ⊂ H n

q a test set if for every y ∈ H n
q either y ∈ D(0, C) or there is a codeword z ∈ T such

that
wt(y − z) < wt(z).

Gradient-like decoding (C, T,y)
• Set c = 0.
• Find z ∈ T such that wt(y − z) < wty. Let c ← c+ z, y ← y − z.
• Repeat until no such z is found. Output c.

Theorem 11. The gradient-like decoding algorithm performs complete ML decoding. Its implementation
complexity is O(n2|T |).

Proof : Let y �∈ D(0). Then there exists z ∈ T such that d(y, 0) < d(y, z1) for some z1 ∈ T. Suppose that
y − z1 �∈ D(0), then there is z2 such that subtracting it from y − z1 reduces its weight. After a certain
number of steps, say m, we will obtain a vector y−∑m

i=1 zu ∈ D(0). This means that y ∈ D(
∑

zu, C), which
completes the decoding task.

Theorem 12. Minimal vectors in a binary linear code form a test set.

Proof : Suppose y �∈ D(0, C), then there exists a codevector c such that d(c,y) < d(c, 0) or wt(y+c) < wt(y).
Next write c =

∑
i mi where the mi are minimal vectors with disjoint supports. Clearly for at least one of

these vectors, say m1, we must have wt(y +m1) < wt(y).

This theorem implies that if d(y,m) ≥ d(y, 0) for every m ∈ M(C) then y is a correctable error.
Therefore, we can improve our estimate of the error probability of max-likelihood decoding from Eq. (3.2)
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as follows;

Pe(C, p) ≤
∑
w≥d

AM
w

n∑
e=
w/2�

π(e)
e∑

s=0

pw
e,s,

where AM
w is the number of minimal vectors of weight w. As we said in the previous lecture, for a random

code and large n the number AM
w

∼= Aw so there is no hope for improving our exponential estimates of
the error probability1. In examples the number of minimal vectors is also large. For instance, let C be a
[2m,

(
m
2

)
+m+ 1, 2m−2] second order Reed-Muller code, m = 6. Then |C| = 4194304, |M|= 3821804.

Another example of a test set is given by zero neighbors. Consider the set B of (error) vectors y such
that d(y, D(0, C)) = 1. Consider the set of codewords

N = {c : ∃y∈B d(c,y) ≤ wt(y)}.
(Intuition: the Voronoi regions of the codewords in N share a common boundary with D(0, C).) Codewords
in this set are called zero neighbors. It is possible to prove

Theorem 13. Zero neighbors in a linear code form a test set.

This result is due to [8].

In communication practice a more important problem related to maximum likelihood decoding is that of
decoding of codes on the Gaussian channel. The above results still apply although they are substantially
more complicated2.

Let C be a code used on a memoryless channel W : X → Y, where we assume that Y is an additive group
(possibly infinite) and that X ⊂ Y is its subgroup. Our goal is, as usual, having received y from the channel
to find the max-likelihood decision x ∈ C :

x = argmaxW (y|x).
First we note that minimal-vectors decoding of binary linear codes can be used to solve this problem. We
proceed as follows. Let

vy(c) = −
n∑

i=1

logW (yi|ci).

Minimal-vectors ML decoding (W , C,y)
• Set c = 0.
• Find m ∈M such that vy(c+m) < vy(c). Let c ← c+m.

• Repeat until no such m is found. Output c.

Proposition 14. For any binary linear code C this algorithm performs complete maximum likelihood de-
coding.

Proof : Let c be the current approximation to the decoding result. Suppose there is a c′ ∈ C such that
vy(c+ c′) < vy(c). By Lemma 6a.11 it is possible to write c′ as a sum of minimal vectors. Therefore, let

c′ =
∑

mu, mu ∈M.

Note that since the code is binary, the supports of different vectors in this expansion are disjoint. Since c′

improves the current decision, so does at least one of the minimal vectors in its expansion. To prove that
this process eventually converges, note that if ε = min

c=c′
|vy(c)− vy(c′)|, then every decoding iteration reduces

the weight by at least ε.

1An even stronger statement holds true: let w = (n − k + 1) − �. Then if � → ∞, no matter how slowly, AM
w ∼ Aw.

2In general, passing from hard decision decoding to soft decision, or from error multiplicities to probabilities (reliabilities)
of symbols usually poses serious problems.
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Almost ML decoding on a general channel Let us call a memoryless channel W : X → Y
symmetric if Y can be written as a disjoint union of finite sets Y = ∪αYα such that every matrix Wα =
‖W (y|x)|, y ∈ Yα satisfies the usual definition of a symmetric channel (every row (column) is a permutation
of a fixed set of numbers).

For instance, the AWGN channel is symmetric: write Y = R as ∪x{±x}.
Let y be the received vector. Recall from Lecture 3 that if the messages are equiprobable, ML decoding

finds a codevector c that satisfies
Pr(c|y) > Pr(c′|y), c′ �= c.

Let us establish a total order x1,x2, . . . on Xn induced by the order of aposteriori probabilities:

Pr(x1|y) ≥ Pr(x2|y) ≥ . . .

where vectors with equal aposteriori probabilities are ordered lexicographically. Given a vector y let us
denote the rank of a vector x ∈ Xn (its number in this ordering) by /y(x).

Let N ≤ |C| be some number. Let c0 = ψ(y) be the ML decision for a given y ∈ Yn. Our goal is to
parallellize “bounded distance decoding”: we will perform search over a subset of N most probable vectors.
Namely, for a given y let ψN be a decoding mapping defined by

ψN (y) =

{
c0 /y(c0) ≤ N

0 otherwise

(to maintain the intuition, recall the framed remark after Lemma 8).

Let us state a far-reaching generalization of Lemma 8 due to [3]

Lemma 15. [3] Let pN be the error probability of decoding ψN . Then

pN ≤ Pe(C,W )(1 +
T

N − T
),

where Pe is the error probability of ML decoding of C on the channel W .

The proof is not easy, so we refer to the source (or to an exposition in [1]).

The goal of this lemma is to formulate a decoding algorithm which will have implementation complexity
of the same order as Sliding Window Decoding (i.e., expn(R(1−R))). The result is due to [3]. We will stop
here.

What if we are not satisfied with almost max-likelihood decoding and prefer max-likelihood instead? In
that case we may rely on trellis decoding which you have seen in ENEE722.

(Define the syndrome trellis, give examples).

More results in this direction are found in [9], see also a recent paper [6].

This concludes our discussion of exponential-complexity decoding algorithms. In the following lectures
we will concentrate on code families which afford polynomial-time decoding algorithms. It will be seen that
under these complexity restrictions it is still possible to construct codes with very good performance.
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