
ENEE 739C: Advanced Topics in Signal Processing: Coding Theory
Instructor: Alexander Barg

Lecture 6a (draft; 9/21/03). Linear codes. Weights, supports, ranks.
http://www.enee.umd.edu/ ãbarg/ENEE739C/course.html

The goal of this lecture is to study general properties of linear codes. Let C be a q-ary [n, k] code with
weight distribution {Ai, i = 0, 1, . . . , n}. Let G,H be a generator and a parity-check matrix of C. The dual
code C⊥ is the set

C⊥ = {x ∈H n
q : HxT = 0}.

Let i be a not all-zero coordinate. We have

|{c ∈ C : ci = 0}| = 1
q
|C|

A shortening of C on the coordinate i is the [n − 1, k − 1, d] linear code obtained by leaving only such
codewords and deleting the ith coordinate.

Let [n] := {1, . . . , n}, E ⊂ [n], Ē = [n]\E. For a matrix M with n columns we denote by M(E) the
submatrix formed by all the columns with numbers in E. The support of a vector x ∈ H n

q is defined as
supp(x) = {i : xi 6= 0}. Given a subcode A ⊂ C, its support is

supp(A) = {i ∈ [n] : ∃a∈A ai 6= 0}
A shortening of C on the coordinates in Ē is a linear code CE such that ∀x∈CE supp(x) ⊂ E.

A projection of C on the coordinates in Ē, also called puncturing, is a restriction of C to the coordinates
in E (simply said, deleting the coorinates in Ē from every codevector of C and deleting repeated entries from
the result). The basic facts about shortenings and puncturings are given in the following

Theorem 1.

(i) If t ≤ d(C)− 1, then CE is an [n− t, k,≥ d(C)− t] code.

(ii) dim CE = |E| − rk(H(E)),dim(CE) = rk(G(E)),dim(CE) + dim((C⊥)E) = |E|.

(iii) CE ∼= C/CĒ .
(iv) (CE)⊥ = (C⊥)E ; (CE)⊥ = (C⊥)E .

Proof : (i), (iii) are obvious. (ii) is counting the number of solutions of a system of linear equations. Let us
prove the first part of (iv). Let a ∈ (C⊥)E , then G(E)aT = 0, so a ∈ (CE)⊥. Further, by (ii)

dim(C⊥)E = |E| − rk(G(E))

= |E| − dim CE = dim(CE)⊥.

The second part of (iv) is analogous.

Recall the notation for the Gaussian binomial coefficient:[
n

k

]
==

k−1∏
i=0

qn−i − 1
qk−i − 1

In other words, [
n

k

]
=

[n]
[k][n− k]

where [u] =
u−1∏
i=0

(qu − 1).

Lemma 2. The number of linear [n, k] codes is
[
n
k

]
.

Proof :
[
n
k

]
equals the number of choices of k linearly independent vectors in H n

q divided by the number of
different bases of an [n, k] code.

Lemma 3. Let |E| = w. Then

(1) |E| − rk(H(E)) = k − rk(G(Ē))
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Proof : Let CE = projE C be the projection of C on the coordinates in E. Clearly, dim CE = rk(G(E)). On
the other hand, CE ∼= C/CĒ by Theorem 1(iii); hence by (ii)

dim CE = k − dim CĒ = k − |E|+ rk(H(Ē)).

This lemma bridges linear codes with the branch of combinatorics known as matroid theory. It turns out
that it is possible to abstract from the linear-algebraic setting and define dependencies axiomatically. One
starts with a finite set [n] and calls some of its subsets independent, making sure they satisfy the same set
of natural conditions that the subsets of linearly independent vectors would. Then for any subset E ⊂ n one
defines its rank as the size of a maximum independent subset contained in it. A large number of properties of
independent sets and other subsets can be proved in this purely axiomatic setting, see [18]. Matroid theory
finds uses in coding theory [4, 6], cryptography [5], information theory [10], multiuser communication [17]
graph theory, topology [11].

Even though we will not use this here, we wish to point out that this lemma contains the MacWilliams
identities in disguise. Recall that ENEE722 gives a different proof of these identities, via the Fourier trans-
form. Both proofs are due to F. J. MacWilliams [15].

Let n, i be nonnegative integers. Recall that(
n

i

)
=


n(n−1)...(n−i+1)

i! i ≤ n
1 i = 0
0 otherwise

In partilucar,
(

0
i

)
= δ0,i.

Lemma 4. (The MacWilliams identities)

(2)
n−u∑
i=0

A⊥i

(
n− i
u

)
= |C⊥|q−u

u∑
i=0

Ai

(
n− i
n− u

)
.

Proof : We have the following chain of equalities:
n−u∑
i=0

A⊥i

(
n− i
u

)
=

∑
|E|=n−u

|(C⊥)E |(3)

=
∑

|E|=n−u

qn−u−rk(G(E))

= qn−k−u
∑

|E|=n−u

qu−rk(H(Ē))

= qn−k−u
u∑
i=0

Ai

(
n− i
n− u

)
.

Here the first equality follows by counting in two ways the size of the set

{(E, c) : |E| = n− u and c ∈ (C⊥)E ,wt(c) ≤ n− u},
the second one is straightforward, the third one (the central step in the proof) is implied by Lemma 3, and
the final step follows by the same argument as the first one.

A familiar form of these identities is obtained by using the weight enumerators of the code C and its dual
code C⊥. We have

A(x, y) =
1
|C⊥|

A(x+ (q − 1)y, x− y).

The MacWilliams identities exist in a variety of different forms, see [13].

Remark. You should be aware that the linear-algebraic approach to the MacWilliams identities is only
one of a number of possible points of view. First of all, a substantial portion of the results above can be
extended to nonlinear codes [16, Ch.5,6]. A combinatorial perspective is given in P. Delsarte [8], see also
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[16, Ch. 21], [9]. An approach via harmonic analysis is given in G. Kabatiansky and V. Levenshtein [14],
see also [7, Ch.9].

Binomial moments of the weight distribution. The quantities

Cw =
w∑
i=0

Ai

(
n− i
n− w

)
(w = 0, 1, . . . , n)

are called binomial moments of the weight distribution of the code C. We have seen (3) that

Cw =
∑
|E|=w

qdim(CE).

Clearly for an [n, k, d] code, C0 = 1, Cw =
(
n
w

)
, w = 1, . . . , d−1. It is possible to express the weight coefficients

via the binomial moments.
Lemma 5.

Ai =
i∑

w=0

(−1)i−w
(
n− w
n− i

)
Cw.

Proof :
i∑

w=0

(−1)i−w
(
n− w
n− i

)
Cw =

i∑
w=0

(−1)i−w
(
n− w
n− i

) w∑
j=0

(
n− j
n− w

)
Aj

=
i∑

j=0

Aj

j∑
w=0

(−1)i−w
(
n− w
n− i

)(
n− j
n− w

)

=
i∑

j=0

Aj

(
n− j
n− i

) j∑
w=0

(−1)i−w
(
i− j
i− w

)
= Ai

Lemma 6. Let A(x, y) be the weight enumerator of C and let C(x, y) =
∑n
w=0 Cwx

n−wyw.

A(x, y) = C(x− y, y)

Proof :
n∑

w=0

Cw(x− y)n−wyw =
n∑

w=0

Cwy
w
n−w∑
j=0

(−1)n−w−jxjyn−w−j
(
n− w
j

)

=
n∑
j=0

xjyn−j
n−j∑
w=0

(−1)n−w−jCw

(
n− w
j

)

=
{
i = n− j

}
=

n∑
j=0

xjyn−j
i∑

w=0

(−1)i−w
(
n− w
n− i

)
Cw

=
n∑
i=0

xn−iyiAi.

From (2)
C⊥n−u = qn−k−uCu (u = 0, . . . , n).

Introducing the weight enumerators C(x, y) =
∑
Cix

n−iyi, C⊥(x, y) =
∑
C⊥i x

n−iyi we then have∑
C⊥n−ux

n−uyu = q−k
∑

Cu(xq)n−uyu

C⊥(y, x) = q−kC(qx, y),
a remarkably simple form of the MacWilliams equation.
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An interesting observation about the binomial moments is that while it is not possible to bound below
individual coefficients of the weight distribution, it is possible to do this for linear combinations of these
coefficients (binomial moments). Here is one possibility:
Theorem 7.

Cw ≥
(
n

w

)
qmax(0,w−n+k)

Proof : Let E ⊆ [n]. We have

dim(CE) = |E| − rk(H(E)) ≥
(
n

w

)
qw−min(w,n−k) =

(
n

w

)
qmax(0,w−n+k)

This result can be applied to bounding the probability of undetected error Pu of a linear [n, k] code. We
have
Theorem 8. [1] Let C be an [n, k] linear q-ary code.

Pu ≥
n∑

w=n−k+1

(
n

w

)
(qw−n+k − 1)

( p

q − 1

)w(
1− q

q − 1
p
)n−w

.

Proof : From the previous theorem,

Cw −
(
n

w

)
≥
(
n

w

)
max(0, qw−n+k − 1).

Then

Pu(C) = A(1− p, p

q − 1
)− (1− p)n = C

(
1− p q

q − 1
,

p

q − 1

)
− (1− p)n

=
n∑

w=0

Cw

( p

q − 1

)w(
1− q

q − 1
p
)n−w

−
n∑

w=0

(
n

w

)( p

q − 1

)w(
1− q

q − 1
p
)n−w

=
n∑

w=0

(Cw −
(
n

w

)
)
( p

q − 1

)w(
1− q

q − 1
p
)n−w

≥
n∑

w=0

(
n

w

)
max(0, qw−n+k − 1)

( p

q − 1

)w(
1− q

q − 1
p
)n−w

In many cases the results of the last two theorems can be improved and generalized (to nonlinear codes),
see [3]. The next exercise is the first step along this way.

Exercise. (Forget the 0) Try to define binomial moments of the distance distribution Cw for an unrestricted
(i.e., not necessarily linear) binary code C. Begin with the following question: what is the support of a
subcode? (Hint: start with subcodes of size 2). Prove that Lemma 6 still holds true, with A(x, y) replaced
by the distance enumerator B(x, y).

The rank function. Rewrite (3) by collecting on the right-hand side subsets of one and the same rank.
Namely, let

Uvu = |{E ⊆ {1, 2, . . . , n} | |E| = u, rk(G(E)) = v}|.
For instance, Ukk is the number of information sets of the code C.

By (3) and Theorem 1(ii) we have

(4)
w∑
i=0

(
n− i
n− w

)
Ai =

n−k∑
v=0

qw−v(U⊥)vw,

where the numbers U⊥ are the rank coefficients of C⊥. Further, Lemma 3 implies that

(5) (U⊥)u−k+v
u = Uvn−u.

The last two equations relate the weight enumerator of C and its rank distribution (Uvu , 0 ≤ u ≤ n, 0 ≤ v ≤ k).
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Example. (MDS codes) An (n,M, d) code is called maximum distance separable (MDS) if M = qn−d+1. Let
C be an [n, k, n−k+1] q-ary linear MDS code with a parity-check matrix H. Then rk(H(E)) = min{|E|, n−k}
for all E ⊆ S, 0 ≤ |E| ≤ n− k. Therefore

(U⊥)vu =

{(
n
u

)
if (0 ≤ v = u ≤ n− k) or (u ≥ n− k + 1, v = n− k);

0 otherwise.

This enables us to compute the weight spectrum of C. Substituting the values of (U⊥)vu into (4), we obtain
A0 = 1, Ai = 0 for 1 ≤ i ≤ n− k, and

An−k+` =
(

n

k − `

) `−1∑
j=0

(−1)j
(
n− k + `

j

)
(q`−j − 1) (1 ≤ ` ≤ k).

Definition 1. The rank polynomial of a linear code C is

U(x, y) =
n∑
u=0

k∑
v=0

Uvux
uyv.

Relations of the rank polynomial of C, its dual code C⊥, and the weight polynomial of C are given by the
following results.
Theorem 9.

U⊥(x, y) = xnydim C⊥U
( 1
xy
, y
)
.

Proof : We have

U⊥(x, y) =
n∑
u=0

n−k∑
v=0

(U⊥)vux
uyv =

n∑
u=0

n−k∑
v=0

Uk−u+v
n−u xuyv (by (5))

= xn
n∑
u=0

n−k∑
v=0

Uk−n+u+v
u x−uyv(6)

= xnyn−k
n∑
u=0

n−k∑
v=0

Uu−vu (xy)−uyu−v

= xnyn−k
n∑
u=0

u∑
v=u−n+k

Uvu(xy)−uyv.(7)

Now let |E| = n− u, rk(G(Ē)) = v. Then |Ē| = u and by (1)

0 ≤ rk(H(E)) = |E| − k + v = v − (u− n+ k).

Hence, for 0 ≤ v ≤ u− n+ k− 1 we have Uvu = 0. Thus, the summation interval of v in (7) can be extended
to 0 ≤ v ≤ u.

Theorem 10.

A(x, y) = yn|C| U
(x− y

y
,

1
q

)
= (x− y)nU⊥

( qy

x− y
,

1
q

)
.

Information profile of a linear code. Let C be a linear code, [n] = {1, . . . , n}, E ⊂ [n]. Consider
the average (over the choice of E) dimension of the code CE :

ew =
(
n

w

)−1 ∑
E∈([n]

w )
dim(CE).

The number ew can be thought of an the average information content of a w-subset.
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The numbers (ew, w = 1, . . . , n) constitute the information profile of the code C. Since dim(CE) =
rk(G(E)), where G is the generator matrix of C, we can also write(

n

w

)
ew =

w∑
i=0

iU iw(C).

The information profile was introduced for its one sake in [12] and was used recently in analyzing iterative
decoding. Paper [12] also computes the average value of ew over all [n, k] codes.

Minimal vectors in linear codes.

For the vectors x,y ∈H n
q we write x ≺ y (x � y) if supp(x) ⊂ supp(y) (resp., supp(x) ⊆ supp(y)).

Definition 2. Let C ⊂H n
q be a linear code. A nonzero vector c ∈ C is called minimal if 0 6= c′ � c implies

c′ = ac where c′ is another codevector and a is a constant. In words: nonminimal vector covers a nonzero
vector with a smaller support.

Let H be a parity-check matrix of C and letM be the set of its minimal vectors. Let us list basic properties
of minimal vectors.

Lemma 11.

(i) Let c ∈ C, U = supp(c). Then c ∈M if and only if rk(H(U)) = |U | − 1.

(ii) (U is minimal) ⇒ (|U | ≤ n− k + 1).

(iii) Every support of size |U | ≤ d(1 + 1
q−1 )− 1 is minimal.

(iv) The linear span (the set of all linear combinations) ofM(C) coincides with C. Moreover, if q = 2 then
every nonzero codevector can be decomposed into a sum of minimal vectors with pairwise disjoint supports.

(v) Let C be a binary code. Then if c ∈ C, c 6∈ M(C), then there is a pair of nonzero code vectors c1 ≺ c
and c2 ≺ c with disjoint supports such that c = c1 + c2.

Proof : The only if part of (1) is obvious. Let us prove the converse. Let hi be the ith column of H(U). By
assumption, there exist w = |U | nonzero numbers λi such that

w∑
i=1

λihi = 0

and some w− 1 of these columns, say the first, are linearly independent. Suppose there exists a code vector
c′, c′ ≺ c, i.e., there exists a vanishing linear combination of columns that does not involve at least one of
the first w − 1 columns, for instance,

w∑
i=2

µihi = 0

with µw 6= 0. Multiply this sum by λw/µw and subtract from the first one. This gives a linear dependence
between the first w − 1 columns, a contradiction.

Part (ii) is implied by (i).

To prove part (iii), suppose that c ∈ C is a nonminimal vector of weight wt(c) ≤ d
(
1 + 1

q−1

)
− 1 and let

c′ ≺ c, c′ ∈ C\{0}. Consider q − 1 code vectors c − ac′, where a runs over all nonzero constants. Summing
up their weights, we get (q − 1) wt(c) − wt(c′). Thus, their average weight is wt(c) − (q − 1)−1 wt(c′).
One of these vectors, say c′′ has weight at most the average. Together with our assumption this implies a
contradiction:

wt(c′′) ≤ wt(c)− wt(c′)
q − 1

≤ d
(
1 +

1
q − 1

)
− 1− d

q − 1
= d− 1.

Part (iv) Let c ∈ C\{0}. Suppose it is not minimal, then there is a minimal vector m1 such that
supp(m1) ⊂ supp(c). There always is a nonzero constant a1 such that (c−a1m1) ≺ c. Denote c1 = c−a1m1.
By the same argument, either c1 is minimal or there is an m2 ∈ M such that (c1 − a2m2) ≺ c1. Since the
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size of the support falls by (at least) one in every step, for a certain i, the vector ci will be minimal. Then
ci = c−

∑i−1
j=1 ajcj .

Part (v) is obvious.

How many minimal vectors are there in a typical linear code? Consider the ensemble given by random
(n− k)× n parity-check matrices. Let EMw be the expected number of minimal vectors of weight w.
Theorem 12. [2] Let w ≤ n− k + 1. Then

EMw =
(
n

w

)
(q − 1)w

qn−k

w−2∏
i=0

(1− q−(n−k−i)).

VarMw ≤ EMw(1 + 2−d/2EMw).

For the proof consult the source. In particular, this theorem implies that for n→∞ almost all vectors of
weight w ≤ n− k + 1 in a typical linear code are minimal.

The main uses of minimal vectors are in decoding of linear codes and cryptography (access structures in
secret sharing schemes).

Example: Let C be an [n = qm−1
q−1 , n−m− 1, 3] Hamming code. We have

Mw =
1
w!

w−2∏
i=0

(qm − qi), (3 ≤ w ≤ m+ 1).

Proof: Consider s = w − 1 linearly independent columns in the parity-check matrix H of the code C.
The total number of linear combinations of these columns with nonzero coefficients equals (q − 1)s; the
1/(q−1)th fraction of them appear as columns in H distinct from the chosen columns (since they are linearly
independent). Every choice of w linearly dependent columns of which s = w − 1 are linearly independent,
defines a minimal codeword. Thus, one has to count the number of distinct choices of s linearly independent
columns in H. This number equals

1
s!
n(n− 1)

(
n− q2 − 1

q − 1

)
. . .
(
n− qs−1 − 1

q − 1

)
.

Taking into account that all the
(
w
w−1

)
choices of w− 1 linearly independent columns within a given support

of size w yield one and the same codeword, we find that the number of minimal codewords of weight w in
the code equals

Bw =
1

(w − 1)!w
n(n− 1)

(
n− q2 − 1

q − 1

)
. . .
(
n− qs−1 − 1

q − 1

)
(q − 1)s,

The substitution of the value of n gives the desired result.
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