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Let us take a step back and suppose that information is transmitted over a discrete memoryless channel
W with input and output alphabet X and output alphabet Y. The channel is defined by a stochastic matrix
W . This means that a letter x ∈ X is received as y ∈ Y with probability wx,y = W (y|x) given by the
corresponding entry of W . The term “stochastic matrix” means that its entries are between 0 and 1 and for
every x ∈ X ∑

y∈Y
W (y|x) = 1

(each row defines a probability distribution). Given n-strings x ∈ Xn,y ∈ Yn we can use the absence of
memory in the channel to compute

Wn(y|x) =
n∏
i=1

W (yi|xi).

We would like to derive an exponential error bound for transmission over W . This will also give a lower
bound on the capacity of the channel.

In fact, the basic ideas are already in place from the previous lecture. The bulk of the effort is spent on
developing the relevant language. My goal here is to show that the concepts involved in the derivation for
the BSC have a rather general nature.

We begin with an observation that in the general case the Hamming distance cannot be a useful measure
of likelihood because the channel does not have to be symmetric. Therefore, one has to work with the
distribution of all possible sequences of symbols (compositions) from X ,Y. Next linear codes also cannot be
of much use in general because the capacity achieving distribution for W does not have to be uniform (recall
your information theory course).

Our nearest goal is to develop a machinery which enables us to work conveniently with compositions,
thinking of them as of probability distributions. We will get to meaningful results on p.3.

Types

We still prefer to call n-strings of letters vectors. The type of a vector x ∈ Xn is a probability distribution
P given by

Px(a) =
1
n
|{i : xi = a}| (a ∈ X ).

In this case we write T (x) = P. The set of all vectors in Xn of type P is denoted by TP . A code C ⊂ TP is
called a constant composition code.

The set of all types on Xn is denoted by P(Xn). There are not that many types:
Lemma 1.

|P(Xn)| =
(
n+ q − 1
q − 1

)
≤ nq (n, q ≥ 2).

Proof : The first equality follows since |P(Xn)| is the number of partitions of n+ q into a sum of q positive
terms, i.e., the needed binomial. To prove the inequality, proceed by induction. Take arbitrary n and q = 2,
then the claim is true:

(
n+1

1

)
= n+ 1 < n2. Now let us fix n and perform induction step on q:(

n+ (q + 1)− 1
q

)
=
n+ q

q

(
n+ q − 1
q − 1

)
≤ n+ q

q
nq ≤ nq+1,

where the first of the two inequalities follows by the induction hypothesis and the second is implied by the
inequality n+q

q < n which holds true for any n, q ≥ 2.
1
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Let

H(P ) = −
q∑
i=1

pi log2 pi

be the entropy of a probability distribution P = (p1, p2, . . . , pq). The entropy of a vector x ∈ TP is defined
as H(x) = H(P ). Clearly if T (x) = P then Pn(x) = 2−nH(P ).

Similarly to the volume of the sphere Sw we would like to estimate the size |TP |. The answer is really the
same.
Lemma 2.

|P(Xn)|−12nH(P ) ≤ |TP | ≤ 2nH(P ).

Proof : The Stirling formula will work in this case as well since

|TP | =
(

n

i1, i2, . . . , iq

)
.

To spare the reader cumbersome computations, let us take an easier path. First, |TP |Pn(x) = Pn(TP ) ≤ 1,
so |TP | ≤ exp[nH(P )]. It remains to prove that

Pn(TP ) ≥ |P(Xn)|−1.

For that observe that
1 = Pn(Xn) =

∑
P ′∈P(Xn)

Pn(TP ′).

The needed result will follow if we show that Pn(TP ) ≥ Pn(TP ′). We have

|TP ′ | =
n!∏

a∈X (nP ′(a))!

and so

Pn(TP ′)
Pn(TP )

=
|TP ′ |

∏
a∈X P (a)nP

′(a)

|TP |
∏
a∈X P (a)nP (a)

=
∏
a∈X

(nP (a))!
(nP ′(a))!

P (a)n(P ′(a)−P (a))

≤
∏
a∈X

(nP (a))n(P (a)−P ′(a))P (a)n(P ′(a)−P (a)) (since n!/m! ≤ nn−m)

=
∏
a∈X

nn(P (a)−P ′(a)) = 1.

Let us check ourselves: suppose |X | = 2,x ∈ Xn, and wt(x) = w = ωn. Let P = (p, 1 − p) be another
binomial distribution. We have

Pn(x) = pωn(1− p)(1−ω)n = 2−n(h2(ω)+D(ω‖p)).

Let Sωn be the set of all vectors of weight ωn, then

Pn(Sωn) ∼= 2−nD(ω‖p)

|Tx| ∼= 2−nh2(δ).

These expressions are familiar from the previous lectures.

Types replace the Hamming weight. What about the distance? The joint type T (x1,x2) for a pair of
distinct codewords x1,x2 is a probability distribution defined by

Px1,x2(a, b) =
1
n
|{i : x1.i = a, x2,i = b}|

for every pair of letters a, b ∈ X .
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Example. Let q = 3. We have T (0012) = (1/2, 1/4, 1/4), T (0012, 1110) = (0, 1/2, 0, 0, 1/4, 0, 1/4, 0, 0),
where we assumed the lexicographic order on X 2.

Entropies

Given x its entropy is H(x) = H(P ) where T (x) = P. For two vectors x,y their joint entropy H(x,y) is
the entropy of the joint type T (x,y). Define the conditional entropy

H(y|x) = H(x,y)−H(y)

(recall that this is the usual way the conditional entropy is expressed for two random variables, e.g., [2,
p.16]).

It may be disturbing that the conditional entropy was defined in the absence of a conditional probability
distribution (type). To bridge the gap, define a stochastic matrix V whose rows are numbered by X , columns
by Y, and the entry vxy equals the frequency of seeing the letter y ∈ Y in the coordinates where x has letter
x ∈ X .

Example. Let q = 3,X = Y, x = (000112),y = (011120). We have

V =

(1/3 2/3 0
0 1/2 1/2
1 0 0

)

Further, the joint type

T (x,y) =
(1

6
,

1
3
, 0, 0,

1
6
,

1
6
,

1
6
, 0, 0

)
.

can be also computed as T (x, y) = P (x)V (y|x) (check this!). �

Generalizing, let V be a stochastic matrix on X × Y T (x) = P . Define the probability distribution

PV (y) =
∑
x

P (x)V (y|x)

and suppose y has type T (y) = PV . In this situation we shall say that y has conditional type TV (x).

We can also write the conditional entropy H(y|x) = H(V |P ) as

H(V |P ) = −
∑
x∈X

P (x)
∑
y∈Y

V (y|x) log V (y|x) = E
(
−
∑
y∈Y

V (y|x) log V (y|x)
)

How many vectors y of conditional type TV (x) are there? The answer is computed similarly to the above:

|TV (x)| ∼= exp(nH(V |P ))

Let T (x1) = P, T (x2) = PV. The mutual information I(x1,x2) between x1 and x2 (sometimes denoted
as I(x ∧ y) ) is defined as

I(x1,x2) =
∑

x,x′∈X
Px1,x2(x, x′) log2

Px1,x2(x, x′)
P (x)PV (x′)

= H(PV )−H(V |P )

(again this is consistent with the standard definition of mutual information).



4

GV bound and the entropy distance distribution

We have created enough concepts to do the job in the general case. Next we must struggle with these
chimeras proving things that are completely obvious. We begin with the “distance distribution” of random
codes.
Theorem 3. For any P ∈ P(Xn) there exists an (n,M = 2nR) code C ⊂ TP such that for any Q ∈
P(Xn ×Xn)

|{ci, cj : i 6= j, T (ci, cj) = Q}| ≤ 2n(R−I(ci,cj))+ε (ε > 0).
In particular, for every pair of distinct vectors c, c′ ∈ C

R ≥ I(c, c′)− ε.

The second part of this theorem, which is a direct generalization of the GV bound, is due to R. Blahut
[1].

Remark. Before proving this let us verify for some simple example that this theorem is consistent with
our idea of the Gilbert bound. Let q = 2, then a type P is simply the set of all vectors of some fixed
weight w = ωn (also called the Johnson space). So let x,x′ be two vectors of weight w and suppose that
d(x,x′) = 2δn. We have

T (x) = T (x′) = (ω, 1− ω)

T (x,x′) = (1− ω − δ, δ, δ, ω − δ)
and

H(x′|x) = H(x′,x)−H(x) = ωh2

( δ
ω

)
+ (1− ω)h2

( δ

1− ω

)
Hence the GV bound on the rate of an (n,M = 2nR, d) code with distance in the Johnson space is given by

R ≥ I(x,x′) = H(x)−H(x′|x)

= h2(ω)− h2

( δ
ω

)
− (1− ω)h2

( δ

1− ω

)
Is this indeed the GV bound in the Johnson space? The answer will be found in the homework. However
there is one positive sign: let ω = 1/2, then we get the familiar R ≥ 1− h2(δ/2). This reflects the fact that
the middle layer (vectors of weight n/2) is not so much different from all of the Hamming space H n

2 . In
particular, the best codes that we know how to construct in either of these two spaces have essentially the
same size and distance distribution.

Proof : (of Theorem 3). Choose M codewords of the code C from Xn randomly and independently. Let
Q ∈ P(Xn ×Xn) be a joint type with both marginal distributions Q(·,x′) and Q(x, ·) equal to P . We have
for i 6= j

Pr[T (ci, cj) = Q] =
|TQ|
|TP |2

≤ exp[nH(x,x′)]
|P(Xn)|−2 exp[2nH(P )]

= |P(Xn)|22−nI(ci,cj).

Hence for a given i

E|{j 6= i, T (ci, cj) = Q}| ≤M |P(Xn)|22−nI(ci,cj).
Let

Fi =
∑

Q∈P(Xn×Xn)
Q(·,x′)=Q(x,·)=P

|{j 6= i, T (ci, cj) = Q}|2nI(ci,cj).

We have

E
M∑
i=1

Fi ≤M2n2q|P(Xn ×Xn)|.

Therefore, there exists a code for which
∑
i Fi satisfies this inequality. In this code at least bM/2c codewords

satisfy
Fi ≤ 2Mn2q|P(Xn ×Xn)| ≤ 2Mnq(q+2).
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These codewords form a code that satisfies both claims to be proved.

Exercise. Suppose that X is an additive group and C is an additive code (i.e., an additive subgroup of
Xn). Let P0 = (1, 0, . . . , 0) be the type of the all-zero vector. Deduce from the above theorem that there
exists a code of size M ∼= 2nR such that for any ε > 0 and any type P 6= P0

|C ∩ TP | ≤ 2n(R+H(P )−log2 q+ε).

In particular, for any x ∈ C\{0} with T (x) = P we have

R ≥ log2 q −H(P )− ε.
Recall the GV bound and the weight profile of random linear binary codes, compare it with these results.

Decoding and error exponents

Given a channel W : X → Y we will transmit with a code C whose existence was proved in Theorem 3.
Let x ∈ C be the transmitted vector and y ∈ Yn be the vector received from the channel. Let us compute
the probability that the conditional type of y is TV (x) :

Wn[TV (x)|x] =
∑

y∈TV (x)

n∏
i=1

W (yi|xi) = |TV (x)|
∏
x∈X

∏
y∈Y

W (y|x)V (y|x)n

= exp(−nD(V ‖W |P )),

where the function

D(V ‖W |P ) =
∑
x,y

P (x)V (y|x) log2

V (y|x)
W (y|x)

(the average over x of the K.-L, distance between V (y|x) and W (y|x)) is called the conditional divergence.
Denoting Q = T (x,y), we can also write D(V ‖W |P ) = D(Q‖W ).

Maximum mutual information decoding. Given a vector y received from the channel W , decode to the
(unique) codevector x such that

I(x,y) = max
x′∈C

I(x′,y).

Theorem 4. Let C ⊂ (X )n be a code with good entropy distance distribution used over the channel W . Then
the exponent of the average error probability of decoding is bounded below as

(1) E(C,W ) ≥ min
V

[D(V ‖W |P ) + (I(P, V )−R)+],

where V ranges over all stochastic matrices V : X → Y and (a)+ = max(a, 0).

We do not give the proof here; see [3].

We will write E(R,P ) to denote the right-hand side of (1).

Note a close analogy between the error exponent for the BSC and (1). In particular, the role of V in (1)
is analogous to that of the parameter ρ in the argument for the BSC in the sense that both account for the
likelihood of codewords different from the transmitted one. Moreover, with some work we can recover parts
(b)-(c) of the Theorem of the previous lecture from this result (in a way the general result is easier because
explicit optimization is impossible).

It is not so difficult to see that E(R,P ) > 0 for R < I(P,W ) and becomes zero when R = I(P,W ). Hence
the capacity of the channel C ≥ maxP I(P,W ). We all know of course that this in fact is an exact equality
[2, p. 184,198]. The distribution P which furnishes the maximum to I(P,W ) is called the capacity achieving
distribution of the channel W .

A plethora of properties of the function E(R,P ) is found in the exercises in [4, Sect. 2.5] and in [6, 7];
of them we will mention only one. The function E(R,P ) can be written in an equivalent form (Gallager’s
famous result [5, 6]) as follows:

E(R,P ) = max
0≤ρ≤1

{
− ρR− log

∑
y

(
∑
x

P (x)W
1

1+ρ (y|x))1+ρ
}
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The curve E(R, p) usually (not always) looks qualitatively like the error exponent for the BSC from the
previous lecture, except that it does not include the expurgation part. The valueρ = ρ0 which maximizes
the above expression for a given R is the negative slope of the tangent to E(R, p) at this point. The straight
line part corresponds to the value ρ0 = 1. The maximum value of the R such that ρ0 = 1 is the critical rate
Rcrit of the channel. For the sphere packing part of the curve ρ0 changes from 1 to 0 as the rate increases
and becomes 0 at R = C (the capacity), where E(R,P ) also reaches zero.
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