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Lecture 4 (draft; 9/3/03). Typical-sets decoding and the Shannon coding theorem
http://www.enee.umd.edu/ abarg/ENEE739C/course.html

Our goal is to derive an upper bound on the minimum attainable error probability of ML decoding for
binary codes used over a BSC(p). This bound, as most existence results of coding theory, is obtained via
averaging over code ensembles.

Together with ML decoding we will study another decoding mapping, typical-sets decoding. The idea is
as follows: with probability tending to one, the weight of the error vector created by the channel BSC(p)
will be close to pn. So it is natural to look for codevectors which are at distance about pn from the received
vector y. Let

T ={xe " |wt(x) —np| < Bv/np(l —p)},

where 3 = o(n'/?),  — oo is an arbitrarily slowly increasing function of n.

Typical-sets decoder. If there exists a unique codevector ¢ such that y — ¢ € T, decode y to c, otherwise
output an arbitrary codevector (random, say).

The interest in typical-sets decoding arises when we want to establish capacity results (Direct coding
theorems) without caring about the decrease rate of the error probability. This is the approach taken in
the book of J. Wolfowitz [3] (see also [2, §2.1], [1]). Another reason, made clear by Lemmas 1-2, is that it
provides an easy, though sometimes coarse tool of analyzing thresholds of particular code families on the
BSC and related channels.

Let us analyze error rate of a linear code with weight distribution A,,,w = 0,d,...,n. We assume that
the all-zero vector was transmitted over the channel and denote by £ the event that the decoder outputs a
codeword of weight different from zero and by &,, the event that it outputs a codeword of some fixed weight
w > 0. Our goal will be to establish conditions for the error probability P, under typical-sets decoding to
decrease with n. This probability can be written as follows:

1) P. <Prle.y € T]+Prly ¢ T].
By the de Moivre-Laplace theorem'

Prly ¢ T = Pr[|wt(y) — np| > By/np(1 - p)] < 2¢~7/2

which tends to zero by our choice of 3. Therefore from now on we forget about the second term in the bound
(1) and concentrate on the first one. Note that for y € T the difference | wt(y) — pn| = o(n), so it will not
affect the main term of our estimate to replace the condition y € T with wt(y) = pn. Denote by &,(c) the
event that y is decoded incorrectly to a given codeword c of weight w. Then for the first term of the bound
(1) we have

2(np+B+4/np(l—p))

Pri€,yeT] = E Ay Pr[€y(c)ly € T| Prly € T1.
w=d
First observe that
-1 pn
n w\ [n—w
Pr[&, T < .
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The vector y is chosen randomly with p(0) = 1—p, p(1) = p, so the unconstrained maximum of the summation

term (%) (;’T:‘;) is attained when i = wp < w/2. Hence we write
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w. Feller, An Introduction to Probability Theory and Its Applications (1970), Vol. 1, §§ VII.6,VIL.7.
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and, bounding Py € T'] above by one,

& rieyen (i) () ()

d
Let Pr[€,y € T] = 2~ "E( o) 4 = wn, then

@ B> max ho(p) - aul@) - v~ (1= whha (522,

We would like to obtain a sufficient condition for the error probability Pr[€,y € T], and thus for P, to go to
zero as n — o0o. For a fixed channel we have

Lemma 1. The error probability P.(C) of a code C with relative distance § under typical-sets decoding tends
to 0 if the weight profile a,(C) satisfies

ay < S(pyw) == ha(p) —w — (1 — w>h2(p1__°’u/)2) (6 <w < 2p).

For a fixed code we have
Lemma 2. Let C be a code with relative distance 6 and weight profile a,,. Then the error probability P.(C)
under typical-sets decoding tends to O for all p such that

S(p,w) —a, >0 (0 <w < 2p).

The importance of these results lies in the fact that they give estimates on the threshold weight distribution
for codes on a BSC with transition probability p or on the threshold probability for max-likelihood decoding
of a given code used over the BSC (recall the definition in Lecture 3).

Let us provide some intuition on the second of the two items, the threshold probability € of a code C with
the weight distribution Ag, A1, ..., A,. Since the errors typically take the transmitted vector ¢ to the sphere
of radius pn around it, the error probability will likely go to zero if the fraction of points on that sphere
which are closer to some other codewords than to ¢ is close to zero. If this is the case, then the threshold
probability #(C) > p. This informal argument is made rigorous by Lemma 1.

Finally, taking C in the above argument to be a random linear code, we obtain a direct coding theorem
for the BSC (a Shannon theorem). Before stating it, let us prove one technical result.

Lemma 3. (A COVERING LEMMA) Let

r) =Y HyesS :dy,c)<r}l.

ceSy

Then for n — oo, r = pn,0 < p<1/2: N(w,r) < (';)2 with equality

N(w,r) = (:)2

only for £ ~ 2p(1 — p).

Proof :

_ (" r w\ [n—w
= w i /2 1 r—1
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FIGURE 1. Intersecting spheres: S,(0) N B,(c)

Finding the maximum on w in the last step calls for some explanation. For a fixed vector y of weight r
we are counting the number of weight-w vectors ¢ with d(y,c) = r = pn. This number is maximized if ¢
is a typical vector obtained after n independent drawings from the binomial probability distribution given
by Ply+c¢=1] = p,Ply+ ¢ = 0] = 1 — p. Hence the maximizing argument is given by w/2 = r(1 — p).
Substituting it, we obtain

N(2r(1 = p),r) = exp[n(ha(p) + (1 = p)h2(1 = p) + ph2(1 — p))] = exp(2nh2(p))

(1)

For large n, the maximum of the intersection volume of the ball B,.(c) and the sphere S,-(0) is attained
for wt(c) ~ 2r(1 — ).
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What to remember:

Theorem 4. The threshold probability for random codes of rate R satisfies pg > dav(R). Hence, the capacity
& of the binary symmetric channel satisfies € > 1 — ha(p).

Proof : Take C a random linear code of rate R. We need to prove that P[,y € T] — 0 if p < dgv(R). Let
us use the Covering Lemma in (3):

Pleyer) (1) 20w Y Nuw.p) = expl-nha(Gov (7) ~ halo))
w=d
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