
ENEE 739C: Advanced Topics in Signal Processing: Coding Theory
Instructor: Alexander Barg

Lecture 2 (draft; 9/5/03). Average properties of codes.
http://www.enee.umd.edu/eabarg/ENEE739C/course.html

In brief, we do not know very well how to construct good codes. This claim comes with a number of
qualifiers (yes we know some very nice algebraic code families and some good randomized code ensembles),
and yet in general it is true. How do we know what is achievable in principle in terms of code construction
with infinite computational power? The answer is: by computing average properties of some appropriately
chosen code ensemble we can then claim that there exist codes that are very close to average. For the main
asymptotic problem, that of finding the highest achievable rate R(δ) of a sequence of binary codes with
relative distance δ it is conjectured that “the average is the best possible” (caveat: in a number of other
situations this claim is not true).

What can be expected of M vectors collected randomly in H n
q ? The first result is given by

Theorem 1. Let M be such that

M(M − 1) <
qn

Bd−1
,

where

Bd−1 = vol(Bd−1) =
d−1∑
i=0

(
n

i

)
(q − 1)i

is the volume of the ball in H n
q . Then there exists an (n, M, d) code C ⊂ H n

q .

Proof : Let C = {x1, . . . , xM} be an ordered collection of points. Call C bad if d(C) ≤ d− 1 and call a point
xi ∈ C bad if it has neighbors in C at distance ≤ d− 1. If the points x2, . . . , xM are fixed, then x1 is bad in
at most (M − 1)Bd−1 codes. The points x2, . . . , xM can be chosen in qn(M−1) ways, so there are no more
than (M − 1)Bd−1q

n(M−1) codes in which point x1 is bad. This is true for any point xi, 1 ≤ i ≤ M ; thus,
there are no more than M(M − 1)Bd−1q

n(M−1) bad codes. If this number is less than the total number of
codes qnM , i.e., if

M(M − 1)Bd−1 < qn,

then there exists a good code.

This theorem (a coding theory folk lore) exemplifies the random choice method of coding theory. Sub-
stantially more refined results along these lines are given in [2]. It turns out that for large n, Theorem 1
accurately describes the parameters of typical codes in H n

q . More formally, we have the following result.

Theorem 2. [3, 1] Let X = H n
2 and n → ∞. For all codes in X of rate R except for a fraction of codes

that decreases exponentially with n, the relative distance approaches the bound

2R = 1− h2(δ).

Proof : Consider the Shannon ensemble A of 2nM binary codes, M = 2Rn, where every code has probability
2−nM . Or, what is the same, consider a random code formed of M independently chosen vectors, where all
the coordinates of every vector are i.i.d. Bernoulli r.v.’s with P (0) = P (1) = 1/2.

Let us assume that δ is chosen to satisfy 2R = 1 − h2(δ) + ε, where ε > 0. We will prove that with
probability approaching 1 a random (n, M) code C ∈ A contains a pair of vectors at distance δn or less. Let
x1, x2, . . . , xM be an ordered (multi)set of independent random vectors such that Pr[xi = y] = 2−n for any
y ∈ {0, 1}n. Let νi,j , 1 < j < i < M , be the indicator random variable of the event d(xi, xj) = δn. The νi,j

are pairwise-independent random variables, each with mean

Eνi,j = Pr[νi,j = 1]

and variance
Var[νi,j ] = Eν2

i,j − (Eνi,j)2 = Eνi,j − (Eνi,j)2 < Eνi,j .
1
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Consider the number NC(d) =
∑

j<i νi,j of unordered pairs of codewords (xi, xj) with i 6= j in C at distance
d = δn apart. We have

ENC(d) =
(

M

2

)
Eνi,j

∼= 2n(2R−1+h2(δ))

Var[NC(d)] =
(

M

2

)
Var[νi,j ] < ENC(d).

For any α > 0 by the Chebyshev inequality we have

Pr[|NC(d)− ENC(d)| ≥ ENC(d)(1+α)/2] ≤ (ENC(d))α

∼= 2αn(1−2R−h2(δ)) = 2−αnε → 0.

Thus, in particular, with probability tending to 1 we have NC(d) > 0, or, in other words, a random code
contains a pair of vectors at distance d = δn. Since ε > 0 can be taken arbitrarily small, this proves an
upper bound δ ≤ h−1

2 (1− 2R) on the relative distance of almost all codes in A.

On the other hand, for any δ such that 2R = 1 − h2(δ) − ε the average number of codeword pairs with
relative distance d = δn decreases exponentially with n. Then

Pr[NC(d) > 1] ≤ ENC(d) → 0;

hence with probability tending to 1 a random code C has distance ≥ δn.

This theorem implies that for R > 1/2 the relative distance of almost all long codes converges to zero.
Let us show that there exist codes with much better parameters, which can be constructed by the Gilbert
algorithm [4]. This is a greedy algorithm which proves the following theorem.

Theorem 3. [4] Let M be any number such that

M vol(Bd−1) < qn.

Then there exists an (n, M + 1,≥ d) code C in H n
q that can be constructed in at most O(nqnM) q-ary

operations.

Proof : Consider the following greedy algorithm:

(1) Pick any point in H n
q ;

(2) Given a subset Ci of i ≤ M points with minimum pairwise distance at least d, take an arbitrary
point ci+1 in

H n
q \

⋃
x∈Ci

Bd−1(x).

If such a point does not exist, stop. Output C = Ci.
(3) Otherwise form Ci+1 = Ci ∪ {ci+1}, augment i by one, and return to the previous step.

By the volume argument it is clear that if

i · vol(Bd−1) < qn

the algorithm will find a point ci+1. This proves the existence of a code C with the claimed properties. The
complexity of this algorithm can be crudely estimated by the complexity of going over the entire space H n

q

in each of the M steps.

Of course, complexity considerations were not a part of [4]—this is a later accretion (recall that back then
the word “computer” was not very much in use). Back in the 1950s any code construction was a substantial
advance.

The Varshamov procedure [6] has a somewhat lower complexity that the Gilbert algorithm and produces
a code with somewhat better parameters which is also linear!

Theorem 4. [6] Let n, k, d be a triple of numbers that satisfy

vol(Bd−2)qk < qn.

Then there exists a linear [n+1,≥ k+1,≥ d] code C ∈ H n
q that can be constructed in O(n3qn−k) operations.
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Proof : Let us say that a q-ary matrix has strict column rank m if any m or fewer sets of its columns are
linearly independent, and there exists a collection of m + 1 linearly dependent columns. An (n − k) × n
matrix H of strict column rank d− 1 defines an [n,≥ k, d] linear code C. Consider the following procedure.

(1) Let h1 be any nonzero (n− k)-vector.
(2) Given i ≤ n column vectors h1,h2, . . . ,hi which form an (n−k)× i matrix Hi of strict column rank

≥ d − 1 find a column hi+1 appending which to Hi does not violate the rank condition. If this is
impossible, stop and output H = Hi.

(3) Form Hi+1 = [Hi|hi+1]. Augment i by one and return to the previous step.

Clearly if the inequality
i∑

j=0

(
i

j

)
(q − 1)j ≤ vol(Bd−2) < qn−k

holds true, it is possible to find hi+1. This proves the existence claim.

The complexity claim follows by observing that for every i we have to find a column vector outside the
union of all linear combinations of d− 2 or fewer columns. Suppose that for some i we have constructed the
matrix Hi with these properties. Let us construct a list of all 2i linear combinations of column vectors for
each of the

(
i

d−2

)
choices of d− 2 columns. This can be done in at most

n2
d−2∑
j=0

(
i

j

)
(q − 1)j ≤ n2

d−2∑
j=0

(
n

j

)
(q − 1)j ≤ n22nhq( d−2

n ) ≤ n22n(log2 q−R)

operations. Since this complexity is required for every i = 1, . . . , n we finally obtain the result.

The situation with the value of the distance in the above theorem is typical for coding theory: by some
constructive procedure we claim that the code distance is at least d (but may be greater). In this situation d
is called the designed distance of the code as opposed to the true distance (remember the designed distance
of BCH and other cyclic codes?).

As n grows, both Gilbert and Varshamov procedures lead to one and the same asymptotic parameters.

Definition 1. The relative Gilbert-Varshamov distance δGV(R) is defined by the equation

R = log2 q − hq(δ) (0 ≤ δ ≤ 1− 1/q).

This relation between the code rate R and relative distance δ is called the Gilbert-Varshamov (GV) bound.

Let us prove that typical linear codes approach the GV bound.

Theorem 5. Let n →∞. For all linear codes in H n
q of rate R except for a fraction of codes that decreases

exponentially with n, the relative distance approaches δGV(R).

Proof : (outline) Consider the ensemble L of random [n, k = Rn] linear binary codes defined by (n− k)× n
parity-check matrices whose elements are chosen independently with P (0) = P (1) = 1/2. If Nw is the random
variable equal to the number of vectors of weight w > 0 in a code C ∈ L, then ENw =

(
n
w

)
(q − 1)w/qn−k

and VarNw ≤ ENw. Thus, ENw grows exponentially in n for ω := w
n > δGV(R). Thus, the relative distance

of a random linear code approaches δGV(R) as n grows, and the fraction of codes whose relative distance
deviates from δGV by ε tends to 0 exponentially in n for any ε > 0.

Thus, unrestricted codes (i.e., codes that are not necessarily linear) on the average are much worse than
linear codes.

In the nest theorem we compute the average weight distribution of a linear code.

Theorem 6. Let Sw = vol(Sw). There exists a linear [n, k] code C with A0 = 1,

Aw(C) ≤

{
n2qk−nSw, w such that log Sw ≥ (n− k) log q − 2 log n,

0, w : log Sw < (n− k) log q − 2 log n.
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Proof : Consider linear codes defined in the same way as in the proof of Theorem 5. A vector of weight
w > 0 lies in the kernel of q(n−1)(n−k) matrices. All the Sw =

(
n
w

)
(q−1)w vectors of weight w are annihilated

by at most Swq(n−1)(n−k) matrices. Thus, on the average the number of vectors of weight w in the code does
not exceed Swq−(n−k) and the fraction of matrices for which this number is ≥ n2Swq−(n−k) (call them bad)
is at most n−2. Even if the sets of bad matrices for different w = 1, 2, . . . , n are disjoint, this leaves us with a
fraction of 1− n−1 of good matrices; any good matrix defines a code C of dimension dim C ≥ k over Fq with

Aw(C) ≤ n2qk−nSw, 1 ≤ w ≤ n.

Writing the right-hand side as exp[(k−n) log q+log Sw+2 log n], we see that once w is such that the exponent
becomes negative, we obtain Aw < 1. Since C is linear, this implies that Aw = 0 for these values of w.

By a slight modification of this proof we can take n2 down to n1+α for any α > 0.

What to remember:

Most linear codes achieve the GV bound, most unrestricted codes do not. For one and the same relative
distance δ the size of a typical unrestricted code is about the square root of the size of a typical linear
code.

Definition 2. Given a code C[n, k, d] with weight distribution A0, A1, . . . , An define its weight profile as
follows

αw/n =
1
n

log2 Aw, w = 0, 1, . . . , n.

Thus, α0 = 1 and αw/n = −∞ for w = 1, . . . , d − 1. For large n we think of the weight profile as of a
continuous function of ω ∈ [0, 1].

Corollary 7. For any R < log q − hq(δ) there exists a sequence of linear codes of growing length n with
weight profile α0, where α0,0 = 0,

α0,ω ≤ R− log q + hq(ω) (δGV(R) < ω < 1− δGV(R)),

α0,ω = −∞ (0 < ω < δGV(R)).

So far we used averaging for establishing lower bounds on codes1. Averaging can be also useful for upper
bounds. Indeed, we know from ENEE 722 (see also [5]) that for an (n, M, d) code C

M ≤ d

d− q−1
q n

whenever the denominator is positive. This inequality, called the Plotkin bound is proved by computing the
average distance between pairs of codewords.

The reason that we are not fully satisfied with the existence results of this lecture is the only way we know
of constructing, say, a linear code that meets the GV bound is of complexity that grows as an exponential
function of the code length n. This becomes infeasible very rapidly; and even if we are given such a code we
still do not know of a good way of decoding it except a (more or less) exhaustive search.

What to remember:

Constructing code sequences that reach the GV bound by any known procedure involves exponential-
complexity algorithms

1Note that by lower bounds we mean results of the form “there exist codes with some particular properties.” A more
conventional use of the term lower bound not applicable to this lecture would be: “for every code the value of a particular

parameter is above some bound.” Therefore sometimes the GV bound is referred to as a lower existence bound or simply
existence bound.
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