
ENEE 739C: Advanced Topics in Signal Processing: Coding Theory
Instructor: Alexander Barg

Lecture 1 (draft; 9/2/03). Review: Notions of coding theory, asymptotic notation. Goals of coding
theory http://www.enee.umd.edu/ ãbarg/ENEE739C/course.html

The goals of this course are: to develop in-depth understanding of the problems of modern coding theory
and prepare students for research work in the area of error-correcting codes. The course will offer a unified
view of the goals, methods and results of coding theory in a variety of communication scenarios in classical
and quantum communication channels. The course will stress the trade-off between performance of code
families and complexity of their implementation. We will discuss several topics in the forefront of the present-
day research including LDPC codes and iterative decoding, list decoding of algebraic codes, expander codes,
and (time permitting) quantum codes.

We assume familiarity with basics of error-correcting codes (ENEE 722), although many concepts will be
reviewed as needed. For the first few lectures as a motivation we assume transmission of information over a
binary symmetric channel.

This lecture contains probably much more than we will need for quite a while.

Codes and their parameters

We give an assortment of definitions related to binary codes. The concepts defined play a fundamental
role in many important coding theory problems discussed later in this lecture and in the course.

The binary Hamming space H n
2 = {0, 1}n with the metric d(·, ·).

Code C ⊂H n
2 of length n and size M . Code distance

d = d(C) := min
x6=y∈C

d(x,y),

rate R = R(C) := (1/n) log2M . Given the length, size and distance, we write C(n,M, d) to denote a code
with these parameters.

The distance distribution of a code with respect to a vector x ∈ C is the vectorB(x) = (B0(x), B1(x), . . . , Bn(x))
where Bi(x) is the number of neighbors of x in C at distance i:

Bi(x) = |{y ∈ C : d(x,y = i)}|.

The (average) distance distribution of the code is defined as the vector B = (B0, . . . , Bn) such that

Bi(C) =
1
M

∑
x∈C

Bi(x).

The distance distribution has two main uses: characterizing combinatorial properties of the code and esti-
mating its error probability of decoding.

The polynomial

B(x, y) =
n∑
i=0

Bix
n−iyi

is called the distance enumerator of the code C.

If C forms a linear subspace of Fn2 it is called a linear code. The quantity k = log2M is called the dimension
of the code (or the number of information symbols). We write C[n, k, d] to denote a linear code of length n,
dimension k, and distance d The distance distribution of C (both average and local, for any codevector x)
coincides with the weight distribution of C.
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Does the distance (or weight) distribution determine the code up to a natural equivalence relation? No,
not at all; in fact, even much more information than that is often not enough to fix the code uniquely. For
instance, consider two linear [6, 3, 2] codes given by their generator matrices

G1 =

[1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 1 1

]
G2 =

[1 1 0 0 0 0
0 0 1 1 0 0
1 1 1 1 1 1.

]
The weight distribution of both C1 and C2 is given by (1, 0, 3, 0, 3, 0, 1); however the covering radius r(C1)−
2, r(C2 = 3) is different. Therefore, the codes C1 and C2 cannot be equivalent.

Codes over alphabets of greater size q ≥ 2 and their parameters are defined analogously. We define the
rate of a q-ary code as

R =
1
n

log2M

(this is nonstandard but enables us to use binary logs throughout1). A sphere Sw(x) ∈H n
2 is defined as

Sw(x) = {y ∈H n
2 : d(x,y) = w}

A ball Bw(x) is defined accordingly. The volume of the sphere (denoted vol(Sw)) is independent of the center.
Consider next the following function

pki,j(H
n

2 ) = ]{z ∈H n
q : d(z,x) = i, d(z,y) = j; d(x,y) = k}

which is the number of triangles with fixed vertices x and y, distance k apart, and a floating vertex z that
obeys the distance conditions. This is called the intersection number of the Hamming space. Convince
yourselves that given i, j, k, the intersection number is independent of the points x,y, z. Next calculate

pki,j =
(

k
1
2 (j − i+ k)

)(
n− k

1
2 (j + i− k)

)
assuming that j − i+ k is even, and pki,j = 0 if it is odd.

A code defines a packing of spheres in H n
2 (i.e., an arrangement of pairwise disjoint spheres). The number

t = b(d− 1)/2c is called the packing radius of the code C. The number

r(C) = max
x∈H n

2

min
c∈C

d(x, c)

is called the covering radius of C.
Remark on binary vs. q-ary codes. In coding theory there is a large group of problems for which the binary

results can be formulated in a closed form while the pursuit of generality leads to cumbersome calculations (as
an example, compute pki,j(H

n
q ); note that this is still a closed-form expression). We take a mixed approach,

stating the results for arbitrary q in cases where this does not lead to excessive computations and sticking to
the binary case otherwise. Note also that traditionally coding theory problems are first studied for binary
codes and then “generalized” to the nonbinary case. Admittedly, doing everything in full generality without
special mention of the binary case is also a justifiable approach, taken in several coding theory texts.

Important functions

Binary entropy
h2(x) = −x log2 x− (1− x) log2(1− x)

(entropy of the binomial distribution with two outcomes 0, 1 taken with probabilities x and 1−x respectively).
Intuition about h2(x): it grows very fast for x in the neighborhood of zero, in particular, faster than any
polynomial p(x). h2(x) is symmetric w.r.t. 1/2. In the neighborhood of 1/2 the function h2(x) is essentially
a parabola (is approximated well by a quadratic function in x). Indeed, let θ = 1/2− x, then

h2(θ) = 1− 2
ln 2

θ2 +O(θ4).

The function h−1
2 (x) is a continuous monotone increasing function of x ∈ (0, 1).

1In principle, the base of the logarithms does not matter as long as it is the same as the base of the exponent in asymptotic
expressions
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q-ary entropy, q ≥ 2
hq(x) = −x log2

x

q − 1
− (1− x) log2(1− x).

Relative entropy (a.k.a. information divergence or Kullback-Leibler distance between two binomial dis-
tributions)

D(x‖y) = x log2

x

y
+ (1− x) log2

1− x
1− y

The role of these functions in coding theory is determined by the asymptotic identities under Asymptotics.

Asymptotics

Many if not most general results in coding theory have asymptotic flavor.

Let n→∞. We use standard notation f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) if there
exists a number A independent of n such that f(n) ≤ Ag(n) at least for all n greater than some n0. If both
f(n) = O(g(n)) and g(n) = O(f(n)) we write f(n) = Θ(g(n)). Finally for finite or infinite a

f(x) ∼ g(x) ⇔ lim
x→a

f(x)
g(x)

= 1

Examples: 1
n = o(1), log n = o(n), nk = o(en) for constant k, etc.

Exercises. 1. What is n! to nn? 2. Let k be a constant. Is it true that
(
n
k

)
∼ nk?

(
n
k

)
= O(n

k

k! ) ?

We also use nonstandard notation f(n) ∼= g(n) if

lim
n→∞

1
n

log
f(n)
g(n)

= 0.

We write . if this limit is less than zero and & if it is greater than zero.

Example: p(n)2n ∼= q(n)2n where p(n) and q(n) are arbitrary nonzero polynomials.

Sometimes we use an informal notation f(n) ≈ g(n) (reads “f(x) is essentially the same as g(x)”) if the
functions f(n) and g(n) behave essentially in a similar way as n grows, and we do not want to specify the
nonessential terms. For instance, p(x)2ax ≈ 2ax and so on.

Important asymptotic equalities. (
n

λn

)
∼= 2nh2(λ)

[
more precisely

1√
8nλ(1− λ)

2nh2(λ) ≤
(
n

λn

)
≤ 1√

2πnλ(1− λ)
2nh2(λ)

]
Proof : The proof is based on the Stirling formula for Γ(x) :

√
2πxx−1/2e−x+ 1

12x−
1

360x3 < Γ(x) <
√

2πxx−1/2e−x+ 1
12x

(proved in most calculus books). For instance, let us prove the upper bound. Recalling that for a positive
integer n, Γ(n+ 1) = n! and letting µ = 1− λ, we compute(

n

λn

)
=

n!
(λn)!(µn)!

<
1√

2πnλµ
1

λλnµµn
e1/12n−1/12λµn−(λµ−1)/360(λµn)3

We get in the exponent
(
1 − 1

20(λµn)2

)
(λµ − 1)/12λµn, which is negative for all n, λ (since 1/4 ≥ λµ ≥

(n− 1)/n2). Thus the exponential term is less than 1 and the required inequality follows.

The lower bound is analogous.

What to remember about the Stirling formula: n! ∼= (n/e)n .
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Let 0 < λ < p < 1.
λn∑
i=0

(
n

i

)
pi(1− p)n−i ∼= 2−nD(λ‖p)

(more precisely
1√

8nλ(1− λ)
2−nD(λ‖p) ≤

λn∑
i=0

(
n

i

)
pi(1− p)n−i ≤ 2−nD(λ‖p) )

In particular, for ω < p = 1/2 we obtain for the volume of the ball in the Hamming space (irrespective of
its center)

1√
8nλ(1− λ)

2nh2(ω) ≤ vol(Bωn) =
ωn∑
i=0

(
n

i

)
≤ 2nh2(ω)

Note also that vol(Sw) ∼= vol(Bw).

What to remember:

vol(Bωn) ∼= 2nh2(ω)

A similar equality holds for the q-ary Hamming space: vol(Bωn(H n
q )) ∼= 2nhq(ω).

Some coding theory problems

Let
A(n, d) = max |C|

be the maximum size of a code C ∈H n
2 with distance d = δn. Define

R(δ) = lim
n→∞

1
n

log2A(n, d)

Does this limit exist? We do not know (although many believe it does). For the moment think of lim sup or
lim inf instead of lim as appropriate. For instance,

R(δ) := lim sup
n→∞

1
n

log2A(n, d).

An elegant observation: R(δ) is a continuous function. We may prove this later; if not see M. Aaltonen,
Notes on the asymptotic behavior of the information rate of block codes, IEEE Trans. Inform. Theory 30
(1984), no. 1, 84–85.

Problem: Find or bound R(δ).

By analogy, define δ(R) as the largest achievable relative distance of a sequence of codes of rate R. The
above problem can be reformulated as finding δ(R) for a given R.

Extremal problems like this one are also studied for all the other parameters of codes introduced above
and for many other functions defined on codes. We will see some of these problems later on.

Some of the main goals of coding theory are to construct good sequences of codes: for instance, codes with
a high minimum distance, or codes with a low error probability of decoding on a Gaussian channel, binary
symmetric channel and other more complicated communication channels while maintaining low complexity
of construction and decoding.
Definition 1. A sequence of codes of asymptotic rate R and relative distance δ is called asymptotically
good if Rδ > 0.

One of the important goals of coding theory can be formulated as constructing low-complexity asymptot-
ically good codes with simple (e.g., polynomial-time) construction and decoding complexity.

General references for coding theory are [1]-[15]. It is hard to single out one book that will have it all:
each of them is good for its own range of topics. Ask me if you want to read about a particular question, I
will probably be able to give a reference.
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dapest, 1981.

4. W. C. Huffman and V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003.

5. R Johannesson and K. Sh. Zigangirov, Fundamentals of convolutional coding, IEEE Press, New York, 1999.
6. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, 3 ed., North-Holland, Amsterdam, 1991.

7. H. Niederreiter and C. Xing, Rational points on curves over finite fields, Cambdridge University Press, 2001.
8. V. Pless, Introduction to the theory of error-correcting codes, John Wiley, New York, NY, 1988.

9. V. Pless and W. C. Huffman (eds.), Handbook of coding theory, vol. 1,2, Elsevier Science, Amsterdam, 1998, 2169pp.

10. O. Pretzel, Codes and algebraic curves, The Clarendon Press, Oxford University Press, New York, 1998. MR 2000c:11098
11. M. Sudan, Algorithmic introduction to coding theory, Lecture notes, MIT Course 6.897, available from

http://theory.lcs.mit.edu/˜madhu, 2002.
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