ENEE739C: Homework 1. Date due 10/23/2003. (no e-mails please).

1. We have proved (Thm. 2.6) that there exists an $[n, k]$ binary linear code whose weight distribution A_1, A_2, \ldots, A_n is bounded above as

$$
A_w \le n^2 \binom{n}{w} 2^{k-n}
$$

if the right-hand side is at least one (and $A_w = 0$ otherwise). Prove that it is possible to improve this estimate by replacing n^2 with n : there exists a binary linear $[n, k]$ code with

$$
A_w \le n \binom{n}{w} 2^{k-n}
$$

.

Hint: consider the ensemble of all linear $[n, k]$ codes. Find the probability that a nonzero vector is contained in a random code from the ensemble. Compute the expected number of weight-w vectors, use the Markov inequality.

2. Consider a finite metric space X in which the volume of the ball $\mathcal{B}_r(\mathbf{x})$ depends on its center. Let

$$
\langle B_r \rangle = \frac{1}{|X|} \sum_{\mathbf{x} \in X} \text{vol}(\mathcal{B}_r(\mathbf{x}))
$$

be the average volume of the ball of radius r . Prove that X contains a code of minimum distance d and size $M \geq |X|/(4\langle B_{d-1} \rangle).$

Hint: perform the Gilbert procedure on the subset of all the points $\mathbf{y} \in X$ such that $\text{vol}(\mathcal{B}_{d-1}(\mathbf{y})) \leq 2\langle B_r \rangle$.

- 3. (GV bound in the Johnson space) Let $\mathscr{J}^{n,w}$ be the space of all binary vectors of length n and weight w.
- (a) Let $\mathbf{x}, \mathbf{y} \in \mathscr{J}^{n,w}$. Prove that the Hamming distance $d(\mathbf{x}, \mathbf{y})$ is even.

(b) Let C be a code of rate R and minimum distance $d = 2\delta n$. Prove that $\mathscr{J}^{n,w}$ contains codes of rate approaching the bound

$$
R = h_2(\omega) - \omega h_2\left(\frac{\delta}{\omega}\right) - (1 - \omega)h_2\left(\frac{\delta}{1 - \omega}\right).
$$

4. Recall the inequality used to prove Thm. 5.1

(1)
$$
P_e(\mathcal{C}) \leq \min_t [P_e(\mathcal{C}, \mathbf{y} \in \mathcal{B}_t(0)) + P(\mathbf{y} \notin \mathcal{B}_t(0))].
$$

where y is the the error vector. In the proof we took C a random linear code and chose $t = d_{\text{GV}}$. Prove that for large *n* this choice is optimal, i.e., furnishes the minimum on t in (1) .

Hint: Find the smallest t satisfying, for large n ,

$$
2^{-n(1-R)}\sum_{w=d}^{2t} \binom{n}{w} \sum_{r=\lceil w/2 \rceil}^{t} \Big[\sum_{i=w/2}^{w} \binom{w}{i} \binom{n-w}{r-i} p^r (1-p)^{n-r} \ge \sum_{r=t+1}^{n} \binom{n}{r} p^r (1-p)^{n-r}.
$$

5. Consider an $[n = 8, k, d]$ linear code C given by the row space of the matrix

$$
\mathbf{G} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

Find k, d. Write out a parity-check matrix of C. Let $E = \{1, 2, 3\}$. Write out the parameters of the codes $\mathcal{C}_E, \mathcal{C}^E, (\mathcal{C}^\perp)_E, (\mathcal{C}^\perp)^E$. Explain all answers.

6. Let $\mathcal{C}[n, k, d]$ be a linear q-ary MDS code, i.e., a code with $d = n - k + 1$. Prove that the dual code C^{\perp} is also MDS.