Problems for ENEE626-2006 Coding Theory

Add problems on nonbinary cyclic codes: symbol field, locator field (see prob. 2 in the final of 2006); minimal polynomials over F_{q}

Last modified on $12 / 22 / 2006$.
Computers can be used only in problems (or their parts) marked with a \S.

1. Let $F=\{0,1\}^{n}$ be the binary Hamming space.
(a) What is the number of vectors $\boldsymbol{x} \in F$ of weight w ? What is the number of vectors in F of even weight?
(b) Let $\boldsymbol{x}, \boldsymbol{y} \in F, \mathrm{~d}(\boldsymbol{x}, \boldsymbol{y})=k$. What is the number $p_{i j}^{k}$ of vectors \boldsymbol{z} such that $\mathrm{d}(\boldsymbol{z}, \boldsymbol{x})=i, \mathrm{~d}(\boldsymbol{z}, \boldsymbol{y})=j$? In particular, what is $p_{i j}^{0}$?
2. Let $F=\{0,1,2\}^{n}$ be the set of all n-vectors over the alphabet of 3 letters. Define the Hamming distance between $x, y \in F$ as

$$
\mathrm{d}(\boldsymbol{x}, \boldsymbol{y})=\mid\left\{i: x_{i} \neq y_{i}\right\} .
$$

(a) What is the number of vectors in F of weight w ?
(b) What is the number of vectors in F whose weight is even?
3. Write out the parameters $[n, k, d]$, a generator and a parity-check matrix for the binary linear codes $C_{1}=\left\{0^{n}\right\}$ (one vector), $C_{2}=F$ (the entire space), $C_{3}=\left\{0^{n}, 1^{n}\right\}$ (the repetition code), $C_{4}=\{$ all even-weight vectors $\}$ (the single parity-check code).
4. Let C be an $[n, k, d]$ linear binary code.
(a) Let i be a coordinate of the code. Prove that either $x_{i}=0$ for every codeword of C or exactly half of the codewords have $x_{i}=0$ (and the other half have $x_{i}=1$).
(b) Consider the codewords of C that contain zero in the last coordinate (assume that their number is less than $|C|$). Form a code C_{1} by taking these codewords and deleting this coordinate. What are the parameters of C_{1} ? Let H and G be a parity-check and a generator matrix of C, respectively. What is the parity check matrix of C_{1}. What is its generator matrix?
(c) Consider the code C_{2} obtained from C be taking every codeword and appending to it the sum of its coordinates. For instance if $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in C$ then the corresponding vector of C_{2} has the form $\left(x_{1}, x_{2}, \ldots, x_{n}, \sum_{i=1}^{n} x_{i}\right)$. Determine the dimension, distance and the parity check matrix of C_{2}.
5. Let C be a binary linear code. Show that if $\boldsymbol{x} \notin C^{\perp}$ then $\sum_{\boldsymbol{y} \in C}(-1)^{x_{1} y_{1}+\cdots+x_{n} y_{n}}=0$.
6. Let $d(\cdot, \cdot)$ be the Hamming distance.
(a) Prove that it is a metric.
(b) Prove that the distance between two even-weight binary vectors is even. Thus the sum of two even-weight binary vectors has even weight.

Let $d(C)$ be the minimum distance of a linear code C. Prove that $d(C)=\min _{\boldsymbol{x} \in C \backslash\{0\}} \mathrm{wt}(\boldsymbol{x})$.
8. Let $\boldsymbol{x}, \boldsymbol{y}$ be binary n-vectors. Let $\boldsymbol{x} \star \boldsymbol{y}=\left(x_{1} y_{1}, x_{2} y_{2}, \ldots, x_{n} y_{n}\right)$ be a vector that has ones exactly in those positions where both \boldsymbol{x} and \boldsymbol{y} have ones. Prove that $\mathrm{wt}(\boldsymbol{x}+\boldsymbol{y})=\mathrm{wt}(\boldsymbol{x})+\mathrm{wt}(\boldsymbol{y})-2 \mathrm{wt}(\boldsymbol{x} \star \boldsymbol{y})$.
9. Consider the $[6,3]$ linear binary code C from lecture 1 .
(a) What is the minimum distance of C ?
(b) Determine the cosets that contain (111111), (110010), and (100000) respectively and find for each of these the coset leader.
(c) Let $y=(111111)$. Find $c \in C$ closest to y by the Hamming distance.
10. Let C be an $[n, k, 5]$ linear code and let H be its parity check matrix. Is it true that $H(1110 \ldots 0)^{T}=$ $H(001110 \ldots 0)^{T}$?
11. Determine a parity check matrix for a linear binary code whose set of coset leaders is (000000), (100000), (010000), (001000), (000100), (000010), (000001), (110000).
12. Let $C=H_{4}[15,11,3]$ be the Hamming code in a systematic form. Write out a generator matrix of C.
13. Prove that the code $C=H_{3, \text { ext }}$ is self-dual.
14. Decode the vectors $10110101,11010010,10011100$ with the code $H_{3, e x t}$. Decode the vector 101 ? 0111 where ? denotes the erased symbol.
15. Show that any binary linear $\left[2^{m}-1,2^{m}-m-1,3\right]$ code can be obtained from the Hamming code H_{m} by a permutation of coordinates.
16. Let C and D be linear codes. (a) Show that $\left(C^{\perp}\right)^{\perp}=C$. (b) Let $C+D=\{x+y: x \in C, y \in D\}$. Show that $(C+D)^{\perp}=C^{\perp} \cap D^{\perp}$.
17. Let C be a binary $[7,4,3]$ linear Hamming code. Consider the code D of length 14 whose codewords are all vectors of the form $|x| x+y \mid$ where $x \in C, y \in C^{\perp}$ and $|a| b \mid$ means writing b next to a. Prove that the parameters of D are $[14,7,4]$.
18. Let \mathcal{H}_{4} be the binary linear Hamming code of length $n=15$.
(a). Let C be a 1-shortening of the code \mathcal{H}_{4} What is the number of codewords of weight 3 in the code C ?
(b) Let C^{\prime} be a puncturing of the code \mathcal{H}_{4} on one coordinate. What is the number of codewords of weight 3 in C^{\prime} ?
(c) Let A be a 5 -shortening of \mathcal{H}_{4}, i.e., the result of 5 successive shortenings. What are the parameters $[n, k, d]$ of A ? Do they depend on the choice of the coordinates on which the code is shortened? Write out a generator matrix and a parity-check matrix of A. Do they depend on the choice of the coordinates?
19. Binomial coefficients. Below all the parameters are whole numbers. Prove that
(i) $\binom{n}{k}=\binom{n}{n-k}$;
(viii) $\sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{j}(r-2 j)=0(r$ odd $)$;
(ii) $\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}$;
(viii) $\sum_{i}(-1)^{i}\binom{p}{i}\binom{i}{s}=(-1)^{p} \delta_{p, s}$
(iii) $(n-k)\binom{n}{k}=n\binom{n-1}{k}$;
(ix) $\sum_{k}\binom{r}{m+k}\binom{s}{n-k}=\binom{r+s}{m+n}$.
(iv) $\sum_{k \text { even }}\binom{n}{k}=\sum_{k \text { odd }}\binom{n}{k}=2^{n-1}$;
(x) $\sum_{i} i\binom{n}{i}=n 2^{n-1}$
(v) $\sum_{k}(-1)^{k}\binom{n}{k}=0$;
(xi) $\sum_{i} i^{2}\binom{n}{i}=\frac{n(n+1)}{4} 2^{n}$.
(vi) $\sum_{0 \leq k \leq n}\binom{k}{m}=\binom{n+1}{m+1}$;
(xii) $\sum_{i=0}^{m}(-1)^{i}\binom{n}{i}=(-1)^{m}\binom{n-1}{m}$.
(vii) $\binom{r}{j}\binom{j}{s}=\binom{r}{s}\binom{r-s}{j-s}$;
(xiii) $\sum_{m=k}^{N} \sum_{z=0}^{m-k}\binom{z+n-k-1}{n-k-1}\binom{N-z-n+k}{N-m-n+k}=\sum_{s=n}^{N}\binom{N}{s}$
(xiv) Let $\boldsymbol{e}=\left(e_{1}, e_{1}, \ldots e_{r}\right), e_{i} \geq 0$ be an r-tuple of integers such that $\sum_{i=0}^{r} e_{i} \leq n$. For $i=1, \ldots, r$ evaluate in a closed form

$$
\sum_{e} e_{i} \frac{n!}{e_{1}!\ldots e_{r}!\left(n-\sum_{i} e_{i}\right)!} \prod_{j=1}^{r}\left((q-1) q^{j-1}\right)^{e_{j}}
$$

20. Covering radius of a code. Let C be a code. Define its covering radius as

$$
\rho(C)=\max _{\boldsymbol{x} \in F_{2}^{n}} \min _{\boldsymbol{c} \in C} d(\boldsymbol{x}, \boldsymbol{c})
$$

(a) Compute $\rho(C)$ for the binary code $C=\{\boldsymbol{x}, \boldsymbol{y}\}$ where $d(\boldsymbol{x}, \boldsymbol{y})=w$.
(b) Let C be a linear code. Prove that $\rho(C)$ is the weight of the coset of largest weight.
(c) Let C be a linear code. Prove that $\rho(C)$ is the smallest number s such that every nonzero syndrome is a combination of s or fewer columns of H.
(d) What is the covering radius of the extended Hamming code $H_{m, \text { ext }}$?
21. Consider a ternary $[4,2]$ code C with a generator matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

Write out a standard array of C. (Generalize from the binary case; operations are now mod 3 , so $-1=2$.)
22. A subset of k coordinates is called an information set of a linear code if the rank of the submatrix of G formed of the columns indexed by these coordinates equals k.
(a) Give an example of a 4-subset that forms an information set in H_{3} and an example of a 4-subset that does not.
(b) Given a vector $\boldsymbol{y}=0111010$ which equals a codeword $\boldsymbol{c} \in H_{3}$ plus some error vector of weight 1 find an information set that does not contain errors; find \boldsymbol{c}.
23. Use the MacWilliams equation to compute the weight enumerator of the Hamming code H_{m} from the weight enumerator of its dual. Compute an explicit expression for the number A_{w} of codewords of weight w in H_{m}.
24. Find the weight enumerator of the extended Hamming code $H_{m, e x t}$ and of its dual code $\left(H_{m, e x t}\right)^{\perp}=R M(1, m)$.
25. (the codes are binary linear) Let $C \subset C^{\perp}$ (such a code is called self-orthogonal, or weakly self-dual). Prove that every codeword of C has even weight. If every row of the generator matrix is of weight divisible by 4 , then every codeword of C is of weight divisible by 4 . Is the last claim true if C is not self orthogonal?
26. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a coset leader of an $[n, k]$ linear code and let G be its generator matrix. Letting $E=\left\{i \in\{1, \ldots, n\}: x_{i}=0\right\}$ prove that the $\operatorname{rank} \operatorname{rk}(G(E))=k$ (i.e., the set of columns of G with numbers in E contains k linearly independent columns).
27. Fourier transform. Let $f(\boldsymbol{x}):\{0,1\}^{n} \rightarrow \mathbb{R}$ be a function. Define the Fourier transform of f by $\hat{f}(\boldsymbol{y})=$ $\frac{1}{2^{n}} \sum_{\boldsymbol{x} \in\{0,1\}^{n}}(-1)^{(\boldsymbol{x}, \boldsymbol{y})} f(\boldsymbol{x})$.
(a) Let $K_{k}(i)=\sum_{\ell=0}(-1)^{\ell}\binom{i}{l}\binom{n-i}{k-\ell}$. Prove that $K_{k}(i)=2^{n} \hat{L}_{k}(\boldsymbol{y})$, where $L_{k}(\boldsymbol{x})=1$ if $\mathrm{wt}(\boldsymbol{x})=k$ and 0 otherwise, and \boldsymbol{y} is a vector of weight i.
(b) Let $\operatorname{wt}(\boldsymbol{y})=i$. Compute directly $\hat{L}_{1}(\boldsymbol{y})=2^{-n} K_{1}(i)$.
(c) The convolution of the functions f and g is defined by $(f * g)(\boldsymbol{y})=\frac{1}{2^{n}} \sum_{\boldsymbol{x} \in\{0,1\}^{n}} f(\boldsymbol{x}) g(\boldsymbol{y}+\boldsymbol{x})$. Prove that

$$
\left(f * L_{1}\right)(\boldsymbol{x})=\frac{1}{2^{n}} \sum_{\boldsymbol{y} \in\{0,1\}^{n}: d(\boldsymbol{x}, \boldsymbol{y})=1} f(\boldsymbol{y})
$$

(d) Prove that if $h=f * g$ then $\hat{h}=\hat{f} \hat{g}$.
(e) Parseval identity. Given two functions f and ϕ prove that

$$
\sum_{\boldsymbol{x} \in\{0,1\}^{n}} f(\boldsymbol{x}) \phi(\boldsymbol{x})=2^{n} \sum_{\boldsymbol{y} \in\{0,1\}^{n}} \hat{f}(\boldsymbol{y}) \hat{\phi}(\boldsymbol{y})
$$

28. Let C be a linear binary $[n, k]$ code of size $M=2^{k}$.
(a) Prove that $\sum_{x \in C} \mathrm{wt}(x) \leq n 2^{k-1}$.
(b) Prove that $d(C) \leq \frac{n M}{2(M-1)}$. This inequality is called the Plotkin bound.
29. Consider a ternary code \mathcal{G}_{12} generated by $G=\left[I_{6} \mid A\right]$ where

$$
A=\left[\begin{array}{rrrrrr}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{array}\right]
$$

Prove that \mathcal{G}_{12} is a $[12,6,6]$ ternary self-dual code.
30. Two binary codes C_{1} and C_{2} are called equivalent if one can permute the coordinates of C_{1} to obtain the set of codewords of C_{2}. Two binary codes, C_{1} and C_{2}, will be called different if they are not equivalent. Prove or disprove: the weight distributions $\left(A_{0}\left(C_{1}\right), A_{1}\left(C_{1}\right), \ldots, A_{n}\left(C_{1}\right)\right)$ and $\left(A_{0}\left(C_{2}\right), A_{1}\left(C_{1}\right), \ldots, A_{n}\left(C_{1}\right)\right)$ of two different binary linear codes C_{1} and C_{2} are different.
31. Take as a given that the polynomial $f(x)=x^{4}+x^{3}+x^{2}+x+1$ is irreducible over \mathbb{F}_{2}.
(a) Show that f is not primitive.
(b) Construct \mathbb{F}_{16} by adding a root β of f to \mathbb{F}_{2}. More concretely, in every row of the table of \mathbb{F}_{16} write the coefficients of the expansion of the corresponding element into the basis $1, \beta, \beta^{2}, \beta^{3}$.
(c) Show that $\beta+1$ is primitive and find its minimal polynomial over \mathbb{F}_{2}.
32. Construct \mathbb{F}_{16} as an extension of \mathbb{F}_{4}. Namely, do the following:

Let α be the primitive element of \mathbb{F}_{16} that satisfies $\alpha^{4}=\alpha+1$ (refer to the table of \mathbb{F}_{16} from the class notes).
(a) Let $\mathbb{F}_{4}=\{0,1, \omega, \bar{\omega}\}$. Using this notation, write out the multiplication and addition tables in \mathbb{F}_{4}. Find i such that $\omega=\alpha^{i}$, find j such that $\bar{\omega}=\alpha^{j}$.
(b) Prove that $f(x)=x^{2}+\omega x+1$ is irreducible over \mathbb{F}_{4}.
(c) Let β be a root of $f(x)$. What is the order of β ? Is β primitive?
(d) Let $\beta=\alpha^{i}$. What is i ?
(e) Prove that $(\beta, 1)$ form a basis of \mathbb{F}_{16} over \mathbb{F}_{4}. Write out coefficients of the expansion of every element in \mathbb{F}_{16} in this basis (in other words, write a representation of every element of \mathbb{F}_{16} as a polynomial over \mathbb{F}_{4}).
(f) Find all monic ireducible polynomials of degree ≤ 2 over \mathbb{F}_{4}. For every element of \mathbb{F}_{16} list its minimal polynomial over \mathbb{F}_{4}.

33. Cyclotomic cosets.

(a) Let $q=p^{m}$ where p is a prime and let α be a primitive element of \mathbb{F}_{q}. Prove that if for some cyclotomic coset $C=\left\{s, s p, s p^{2}, \ldots\right\}$, its size $|C|<m$, then α^{s} lies in a subfield of \mathbb{F}_{q}.
(b) Let $p=2, n=2^{m}-1, m \geq 3$. Prove that the cyclotomic cosets containing 1 and 3 (i.e., containing α and α^{3}) are disjoint. Prove that the size of each of these cosets is m (thus, $\operatorname{deg} m_{1}(x)=\operatorname{deg} m_{3}(x)=m$.)
34. (a) Determine the number of primitive elements of \mathbb{F}_{32}.
(b) Show that the polynomial $f(x)=x^{5}+x^{2}+1$ is irreducible over \mathbb{F}_{2}.
(c) Are there elements $\gamma \in \mathbb{F}_{32}$ of order 15 ?
(d) Is \mathbb{F}_{16} a subfield of \mathbb{F}_{32} ?

Let α be a zero of $f(x)$.
(e) Compute $\prod_{i=0}^{4}\left(x-\alpha^{i}\right)$.
(f) Compute the logarithm of $\alpha^{4}+\alpha^{3}+\alpha$.
(g) Let $\gamma \in \mathbb{F}_{32} \backslash \mathbb{F}_{2}$. Show that γ is not a root of a polynomial of degree less than 5 .
(h) Show that $1, \gamma, \gamma^{2}, \gamma^{3}, \gamma^{4}$ is a basis for \mathbb{F}_{32} as a linear space over \mathbb{F}_{2}.
(i) What are the coordinates of α^{8} with respect to the basis $1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}$?
35. For an element $a \in \mathbb{F}_{p^{m}}$ define its trace as

$$
\operatorname{Tr}(a)=\sum_{j=0}^{m-1} a^{p^{j}}
$$

(a) Prove that $\operatorname{Tr}(a) \in \mathbb{F}_{p}$ for any $a \in \mathbb{F}_{p^{m}}$.
(b) Prove that $\operatorname{Tr}(a+b)=\operatorname{Tr}(a)+\operatorname{Tr}(b)$.
(c) Prove that $\operatorname{Tr}(\beta)$ takes every value in \mathbb{F}_{p} equally often.
(d) Prove that $\operatorname{Tr}\left(\beta^{p}\right)=\operatorname{Tr}(\beta)^{p}=\operatorname{Tr}(\beta)$.
(e) Let $g(x)=x^{r}+a_{r-1} x^{r-1}+\ldots$ be the minimal polynomial of $\beta \in \mathbb{F}_{p^{m}}$. Prove that $\operatorname{Tr}(\beta)=-m a_{r-1} / r$.
36. Factorize $x^{73}+1$ over F_{2}.
37. Factorize $x^{10}+1$ into irreducible polynomials over \mathbb{F}_{2}.
38. Let m be odd and let C be an $\left[n=2^{m}-1, n-2 m, d\right]$ cyclic code with zeros α, α^{-1} (the Melas code). Show that $d \geq 5$ (for instance, use the Hartmann-Tzeng bound).
39. (a) Let C be a cyclic code and let C^{\perp} be its dual. Prove that the zeros of C^{\perp} are inverses of the nonzeros of C.
(b) Prove that if the generator polynomial $g(x)$ of a cyclic code C satisfies $g(1)=0$, then all the codewords of C have even weight.
40. The polynomial $x^{15}+1$ factors over F_{2} as follows:

$$
x^{15}+1=(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

Let C be a $[15, k, d]$ binary cyclic code of length 15 generated by $g=(x+1)\left(x^{4}+x+1\right)$.
(a) What are k and d (the designed distance). What about the true distance?
(b) Is $x^{14}+x^{12}+x^{8}+x^{4}+x+1$ a codeword in C ?
(c) List all $[n=15, k=8]$ binary cyclic codes and their dual codes. For each code write its generator polynomial and check polynomial.
(d) What is the total number of binary cyclic codes of length 15 ?
41. Let β be the root of $f(x)=x^{4}+x^{3}+x^{2}+x+1$. Show that $\beta+1$ is a primitive element of \mathbb{F}_{16} and find its minimal polynomial.
42. Let $m \geq 4$ be even and let C be an $\left[n=2^{m}+1, k, d\right]$ binary cyclic code whose zero is ω (the nth degree primitive root of unity). Determine k and prove (using the Hartmann-Tzeng bound or otherwise) that $d \geq 5$. C is called the Zetterberg code.
43. Let C be a ternary $[80, k, d \geq \delta]$ BCH code, where δ is the BCH designed distance. Find k for $\delta=4,7,11$.
44. Let C be a $[15, k, d] 16$-ary RS code with zeros $\alpha, \alpha^{2}, \ldots, \alpha^{6}$.
(a) What are k and d ?
(b) Write out the generator polynomial $g(x)$?
(c) Find a codeword of weight 10 in C .
(d) Given a vertor $y=\left(\alpha^{8}, \alpha^{10}, 1, \alpha^{8}, \alpha^{10}, \alpha^{3}, \alpha^{12}, \alpha^{6}, \alpha^{10}, 1,0, \alpha^{4}, 0, \alpha^{7}, 0\right)$, perform the calculations of the Gorenstein-Peterson-Zierler algorithm to decode it. Use Forney's algorithm to determine the values of the errors.
(e) Let c be the decoding result. Suppose that y was received from the channel that transmits a 16-ary symbol correctly with probability $1-p$ and changes it to another symbol with probability $p / 15$, where $p=0.01$. What is the probability of transmitting c and receiving y ?
45. Let C be a ternary primitive BCH code of length 26 with zeros $\alpha, \alpha^{2}, \alpha^{4}, \alpha^{5}$.
(a) Determine the parameters and the generator polynomial of C.
$\left(b^{\S}\right)$ Decode the vector $y=(00000001200202020110002120)$, i.e., find the vector $c \in C$ closest to y by the Hamming distance (if you use a computer algebra system, show all the steps of the algorithm).
46. Let C be an $[n=15, k=12, d]$ primitive Reed-Solomon code over \mathbb{F}_{16}. Construct 2 codewords of weight d which are not proportional to each other and are not cyclic shifts of each other.
47. Let $C[n, k, d=n-k+1]$ be a Reed-Solomon code. Prove that the covering radius $\rho(C) \geq d-1$.
48. Let C be a $[15, k, d]$ RS code over \mathbb{F}_{16} with zeros $\alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}$, where α is a root of $x^{4}+x+1$.
(a) What are k and d ?
(b) Find the generator polynomial of C.
(c) Suppose that the vector received from the channel is $\left(000 \alpha^{7} 00 \alpha^{3} 00000 \alpha^{4} 00\right)$. Compute the syndromes. What is the decoding result?
49^{\S}. Let C be an $[n=63,53,11]$ RS code over F_{64}
The weight distribution of an RS code is found as $A_{0}=1, A_{1}=\cdots=A_{10}=0$, and for $w \geq 11$,

$$
A_{w}=\binom{n}{w} \sum_{j=0}^{w-d}(-1)^{j}\binom{w}{j}\left(q^{w-d+1-j}-1\right), \quad w \geq 11
$$

Suppose that the code is used over a q-ary symmetric channel with the parameter p and decoded to correct t errors.
(a) Suppose that $t=5$. Compute the probability P_{e} of miscorrection and the probability $P_{x}+P_{e}$ of failure or miscorrection for $p=10^{-i}, i=2,3, \ldots, 6$. Attach a table. Attach a plot for $1 \leq i \leq 6$.
(b) Compute the probabilities in (a) for $t=3,4$. Show the results for P_{e} in the same plot for $t=3,4,5$. In another plot, show the results for P_{x} for $t=3,4,5$. What happens to the probability P_{e} as t decreases and why? The same question for P_{x}.
(c) Suppose that $t=0$, i.e., the code is used for pure error detection. Compute the probability of correct decoding P_{c} for $p=10^{-i}, i=2,3, \ldots, 6$ (attach a table).
(d) In the same situation as in (c), write our a general expression for the probability of miscorrection P_{e} (in this case also called a probability of undetected error and denoted $P_{u e}$) for an $[n, k, d]$ linear q-ary code with weight enumerator $A(x, y)$.
(e) For the RS code in question compute $P_{u e}$ for $p=63 / 64$. Compare this number with $64^{k-n}=64^{-10}$. Explain the result of the comparison.
(f) Compute exactly the fraction of the space $\left(\mathbb{F}_{64}\right)^{63}$ occupied by spheres of radius 5 about the codewords of C. Based on the outcome make an educated guess if max-likelihood decoding of the code C will have a much better performance than decoding up to 5 errors, and explain your answer.
$\mathbf{5 0}{ }^{\S}$. Let C be the binary Hamming code of length 31 used on a binary symmetric channel with the parameter p, denoted by $\operatorname{BSC}(p)$.
(a) Let $p=0.004$. Compute the probability of miscorrection P_{e} for bounded distance decoding that corrects one error. Compute the error probability $P_{m l}$ of max-likelihood decoding of C. If your answers are different, you owe me a serious explanation.
(b) Estimate the bit error rate p_{b} for $p=10^{-i}, i=2,3, \ldots, 6$: write out a formula that you used and attach a table of the results. Plot $\log p_{b}$ vs $\log p$.
51. Let C be a binary $[16,8,6]$ code with weight enumerator $A(x)=1+112 x^{6}+30 x^{8}+112 x^{10}+x^{16}$.

Suppose that C is used on a $\operatorname{BSC}(p)$.
(a) How many errors can C correct?
(b) What is the probability of decoding failure for $p=0.005$ if the code is used to correct 2 errors?
(c) Compute the number of error patterns of weight 4 and 6 that have distance 2 to a given codeword of weight 6 .
52. A $[32,16,8]$ binary code C has weight enumerator

$$
A(x)=1+620 x^{8}+13888 x^{12}+36518 x^{16}+13888 x^{20}+620 x^{24}+x^{32}
$$

(a) What is the number t of errors that the code can correct?

Suppose the code C is used on a $\operatorname{BSC}(p)$.
$\left(\mathrm{b}^{\S}\right)$ Compute the error probability $P_{e}(t)$ of bounded distance decoding correcting up to t errors for $p=10^{-i}, i=$ $2,3,4,5,6,7$. Give a table.
$\left(c^{\S}\right)$ For the same values of p as in (b), estimate the probability $P_{e}(t)$ by assuming that error patterns of weight ≥ 8 always lead to a decoding error. Give a table of the results in (b) and (c). Next time you compute the error probability of bounded distance decoding, will you need the entire weight enumerator?
$\left(\mathrm{d}^{\S}\right)$ Using the Poltyrev bound, estimate the error probability $P_{e, m l}$ of maximum likelihood decoding for the code C. What is the optimizing value of the cutoff radius that you found (is it the same for different p)? Plot the results of (b) and (d) in the same plot for $p=10^{-i}, 2 \leq i \leq 7$.
53. Suppose that $\mathbf{0}$ is transmitted over a binary symmetric channel with crossover probability p. What is the probability that the received vector will be at most distance 1 away from a given vector \boldsymbol{c} of weight w ?
54. Let $\Phi=\{C\}$ be a family of q-ary $[n, k]$ linear codes such that every vector $x \in \mathbb{F}_{q}^{n}$ is contained in the same number of codes from the family.
(a) Prove that if

$$
\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}<\frac{q^{n}-1}{q^{k}-1}
$$

then Φ contains a code with distance d.
(b) Let $q=2$. Conclude that for $n \rightarrow \infty, \Phi$ contains codes that meet the asymptotic GV bound.
55. Does there exist a $[38,9,19]$ binary linear code?
56. The Johnson space $J^{n, w}$ is the subset of the binary Hamming space \mathbb{F}_{2}^{n} formed of all the vectors of constant weight w.
(a) What is the volume of a ball of radius $2 r$ in $J^{n, w}$?
(b) Formulate the Gilbert bound on codes for $J^{n, w}$.
(c) What is the asymptotic form of the bound that you found in (a)? In other words, express the code rate R as a function of the relative distance δ.
57. Prove that $R M(0, m)$ and $R M(0, m)^{*}$ are repetition codes, $R M(m-1, m)$ contains all vectors of even weight, $R M(m, m)=\left(\mathbb{F}_{2}\right)^{2^{m}}, R M(m, m)^{*}=\left(\mathbb{F}_{2}\right)^{2^{m}-1}$. Prove directly that the dual of $R M(1, m)$ is the extended Hamming code $\mathcal{H}_{m, \text { ext }}$.
58. Write out a parity-check matrix of the Reed-Muller code $R M(2,5)$. Which submatrix of this matrix generates $R M(1,5)$?
59. Consider an $n=2, k=1$ convolutional code with memory $m=3$ and polynomial generator matrix $\mathbf{G}(x)=$ $\left(1+x^{2}, 1+x+x^{2}+x^{3}\right)$.
(a) Is this code catastrophic?
(b) Draw the diagram of the encoder as a feedforward register; draw the first 5 steps of the trellis diagram of the code; label the branches.
60. Let A_{w} be the number of codewords in a random code from the ensemble of linear binary codes defined in class. Compute $\mathrm{E}\left[A_{w}\right], \operatorname{Var}\left(A_{w}\right)$. Prove that $\operatorname{Var}\left(A_{w}\right)<\mathrm{E}\left[A_{w}\right]$.
61. Construct a binary $(n, M, d)=(5,4,3)$ code. Prove that there is no $(5,5,3)$ code.
62. Find the coset leaders for a binary linear $[n, n-1,2]$ code.
63. We are given an $[n, k, d]$ binary linear code with no all-zero coordinates.
(a) Prove that one can construct an $[n+1, k, d]$ code with no all-zero coordinates.
(b) Let $k \geq 1$ and $n>d \geq 2$. Prove that one can construct codes with the parameters

$$
[n-1, k-1, d], \quad[n-1, k, d-1], \quad[n, k-1, d], \quad[n, k, d-1] .
$$

64. Let \mathbf{G}, \mathbf{H} be a generator and a parity-check matrix of a linear binary $[n, k]$ code. For a given subset $E \subset$ $\{1,2, \ldots, n\}$ let E^{c} be its complement. For any $E \subset\{1,2, \ldots, n\}$ prove that

$$
k-\operatorname{rk}(\mathbf{G}(E))=\left|E^{c}\right|-\operatorname{rk}\left(\mathbf{H}\left(E^{c}\right)\right)
$$

65. (Companion matrix representation of finite fields). Let F be a finite field and let $a(x)=x^{n}+\sum_{i=0}^{n-1} a_{i} x^{i} \in F[x]$. Consider the companion matrix of $a(x)$ defined as

$$
C_{a}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \ddots & \ddots & 0 & \vdots \\
0 & \ldots & 0 & 1 & -a_{n-1}
\end{array}\right)
$$

(a) Prove that $a(x)=\operatorname{det}\left(x I-C_{a}\right)$. Deduce that $a\left(C_{a}\right)=0$.
(b) Let $u(x)=\sum_{i=0}^{n-1} u_{i} x^{i}$ and $v(x)=\sum_{i=0}^{n-1} v_{i} x^{i}$. Show that $v(x)=x u(x) \bmod a(x)$ if and only if

$$
\boldsymbol{v}^{T}=C_{a} \boldsymbol{u}^{T}
$$

where $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$ and $\boldsymbol{u}=\left(u_{0}, u_{1}, \ldots, v_{n-1}\right)$.
(c) Let $a(x)$ be irreducible. Prove that the set of matrices $\left\{b\left(C_{a}\right), b(x) \in F, 0 \leq \operatorname{deg}(b(x)) \leq n-1\right\}$ forms a field (which is thus isomorphic to the nth degree extension of F).
66. (Quadratic residues.) An element $a \in \mathbb{F}_{q}$ is called a quadratic residue in \mathbb{F}_{q} is there exists an element $x \in \mathbb{F}_{q}$ such that $a=x^{2}$ and is called nonresidue otherwise.

Let q be odd, let $R(N)$ be the set of quadratic residues (nonresidues) respectively.
(a) Prove that there are exactly $(q-1) / 2$ quadratic residues in F.
(b) Prove that $\prod_{a \in R}(x-a)=x^{(q-1) / 2}-1$ and $\prod_{a \in N}(x-a)=x^{(q-1) / 2}+1$.
(c) Prove that $-1 \in R$ if and only if $q=1 \bmod 4$.
(d) Let $q \neq 2$ be prime. Define the Legendre symbol as a function $\chi: \mathbb{F}_{q} \rightarrow\{-1,0,1\}$ such that $\chi(a)=1$ if $a \in R, \chi(0)=0$, and $\chi(a)=-1$ if $a \in N$. Prove that

$$
\begin{gathered}
\chi(a b)=\chi(a) \chi(b), \quad \chi(a)=a^{(q-1) / 2} \\
\sum_{b \in \mathbb{F}_{p}} \chi(b) \chi(b+c)=-1 \quad(c \neq 0)
\end{gathered}
$$

67. (Product codes). Let $C_{1}\left[n_{1}, k_{1}, d_{1}\right]$ and $C_{2}\left[n_{2}, k_{2}, d_{2}\right]$ be q-ary linear codes. Consider the code $C=C_{1} \otimes C_{2}$ of length $n_{1} n_{2}$ formed of matrices in which each row is a codeword in C_{2} and each column is a codeword in C_{1}.
(a) Let U be a $k_{1} \times k_{2}$ matrix of message symbols that corresponds to a codeword in C. Prove that C can be encoded by first encoding the rows of U with C_{2} and then encoding the columns of the obtained $k_{1} \times n_{2}$ matrix with C_{2}. Prove moreover that C can be encoded by first encoding the columns of U with C_{1} and then the rows of the obtained $n_{1} \times k_{2}$ matrix with C_{2}.
(b) Prove that the parameters of C are $\left[n_{1} n_{2}, k_{1} k_{2}, d_{1} d_{2}\right]$.
(c) Write out a parity-check matrix of C.
(d) Give a decoding algorithm of C that corrects $1 / 4\left(d_{1} d_{2}-1\right)$ errors.
(e) Give a decoding algorithm of C of complexity at most $O\left(\exp \left(n_{1}+n_{2}\right)\right)$ that corrects $1 / 2\left(d_{1} d_{2}-1\right)$ errors. Hint: To decode a row $y_{i, 1}, \ldots, y_{i, n_{2}}$ with C_{2}, compute the total cost, in terms of the distance of columns to codewords of C_{1}, of using 0 and 1 in each of the coordinates $(i, j), j=1, \ldots, n_{2}$. This is called a min-sum algorithm.
(f) Take a complete bipartite graph G with n_{2} vertices in one part, call it V_{1}, and n_{1} vertices in the other part, denoted V_{2}, and all the possible edges between the parts. Consider the set of vectors $C \subset\{0,1\}^{n}$ with coordinates indexed by the edges of G such that all the edges incident to a vertex in V_{1} form a codeword in C_{1} and all the edges incident to a vertex in V_{2} form a codeword in C_{2}.
(i) Prove that C is a linear code.
(ii) How is the code C related to the product code above?
(iii) Compute directly the parameters of C.
(iv) Describe the processing of the decoding algorithms in parts (d) and (e) in terms of the graph.
(g) Replace the complete graph in part (e) with a Δ-regular graph, i.e., a graph in which every vertex has degree Δ. Replace the codes C_{1} and C_{2} with codes $D_{1}\left[\Delta, k_{1}\right]$ and $D_{2}\left[\Delta, k_{2}\right]$. What are the parameters of the code obtained? Write out its parity-check matrix.
(h) In part (g) let C_{1} be a $[\Delta, \Delta-1]$ binary single parity check code and C_{2} a $[\Delta, 1]$ repetition code. Write out a parity-check matrix of the code C thus obtained.
68. (from an exam) We are studying a $[10,6] \mathrm{RS}$ code C over \mathbb{F}_{11}.
(a) Prove that $\alpha=2$ is a primitive element of $F=\mathbb{F}_{11}$. Is it true that all the elements $\{2, \ldots, 10\}$ are primitive $\bmod 11 ?$
(b). Write out a parity-check H matrix of C. How many codewords does C contain?
(c) Reduce H to a systematic form $H^{\prime}=\left[I_{4} \mid A\right]$. Hint: $\left[\begin{array}{llll}1 & 2 & 4 & 8 \\ 1 & 4 & 5 & 9 \\ 1 & 8 & 9 & 6 \\ 1 & 5 & 3 & 4\end{array}\right]^{-1}=\left[\begin{array}{cccc}2 & 1 & 8 & 1 \\ 6 & 0 & 10 & 6 \\ 2 & 5 & 0 & 4 \\ 7 & 7 & 2 & 6\end{array}\right](\bmod 11)$.

In which coordinates are the message symbols located?
Then reduce H to a systematic form $H^{\prime \prime}$ in which the message symbols are located in coordinates $1,2,4,6,8,10$.

$$
\text { Hint: }\left[\begin{array}{llll}
4 & 5 & 9 & 3 \\
5 & 3 & 4 & 9 \\
9 & 4 & 3 & 5 \\
3 & 9 & 5 & 4
\end{array}\right]^{-1}=\left[\begin{array}{llll}
7 & 6 & 3 & 5 \\
6 & 5 & 7 & 3 \\
3 & 7 & 5 & 6 \\
5 & 3 & 6 & 7
\end{array}\right](\bmod 11) .
$$

(d). Using H^{\prime}, write out a generator matrix G of C in a systematic form.
(e). Using H^{\prime}, find the codeword \boldsymbol{c}_{0} that corresponds to the message symbols $(1,1,1,1,1,1)$. Then find the codeword that corresponds to these message symbols using G for encoding. Are the codewords the same? Explain the outcome.
(f). What is the polynomial f such that $\operatorname{eval}(f)=\boldsymbol{c}_{0}$?
(g). Is is true that $\left(c_{0}, c_{1}, \ldots, c_{9}\right) \in C$ implies that $\left(c_{9}, c_{0}, c_{1}, \ldots, c_{8}\right) \in C$?
(h). Let $\boldsymbol{c} \in C$ be a vector of weight 5 . Prove that if $\boldsymbol{c}^{\prime} \in C$ is such that $\operatorname{supp}(\boldsymbol{c})=\operatorname{supp}\left(\boldsymbol{c}^{\prime}\right)$ then $\boldsymbol{c}^{\prime}=a \boldsymbol{c}$ where $a \in F \backslash\{0\}$ is some constant.
(i). Using problem (h), compute directly, with proof, the number of vectors of weight 5 in C (your answer should be a number, not an expression).
(j). Let $\boldsymbol{r}=(3,0,0,10,5,4,0,6,10,0)$ be a received vector. Perform the Peterson-Gorenstein Zierler algorithm to determine the number of errors and to decode the vector.
(k). Use the codeword found in part (j) to find the polynomial f such that eval (f) equals to this codeword.
69. (from an exam) Consider a ternary linear code \mathcal{C} with the generator matrix

$$
G=\left[\begin{array}{cccccc}
0 & 0 & 1 & 1 & 2 & 0 \\
1 & 0 & 0 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 & 1 & 2 .
\end{array}\right]
$$

(a) Find a parity-check matrix of \mathcal{C}.
(b) What are the parameters $[n, k, d]$ of the code \mathcal{C} ?
(c) How many cosets does C have? Name 10 coset leaders.
70. (from an exam) Let $f(x)=x^{4}+x^{3}+1$ and let α be a root of f.
(a) Is f a primitive polynomial?
(b) Let $\mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$ be the field of 4 elements. Is it a subfield of \mathbb{F}_{16} ? Write out the addition table of \mathbb{F}_{4}.

Given a basis (a, b) of \mathbb{F}_{16} over \mathbb{F}_{4}, each element of \mathbb{F}_{16} can be expressed uniquely as $\mu a+\nu b$, where $\mu, \nu \in \mathbb{F}_{4}$.
(c) Is $(1, \omega)$ a basis of \mathbb{F}_{16} over \mathbb{F}_{4} ?
(d) Let $g(x)=x^{2}+\omega x+1$. Is it irreducible over \mathbb{F}_{4} ?
(e) Let β be a root of $g(x)$. Find the order of β. Is it primitive?
(f) Express β as a power of α.
(g) Find the representation of α^{7} in the basis $(1, \beta)$ over \mathbb{F}_{4}.
(h) Find the cyclotomic coset mod 4 that contains α^{7}. Find the minimal polynomial of α^{7} over \mathbb{F}_{4}.
71. Let C be a linear $[n, R n]$ binary code whose weight disribution satisfies $A_{w} \leq n\binom{n}{w} 2^{(R-1) n}, w=1, \ldots, n$. Derive the error probability of max-likelihood decoding of C on a $\operatorname{BSP}(p)$ using the Bhattacharyya bound. Does the result show that the code achieves capacity?
72. Find an RS code and a received vector r for which the calculations of a list-decoding algorithm (Sudan's or GS) give more than one solution; show the decoding steps of r. Hint: Such vectors r are found around the midpoint of the distance between two codewords.
73. Consider a binary linear code C with the generator matrix

