All answers should be accompanied with proofs or sufficient explanation. Intermediate calculations should be shown.

10 points for each of the questions.

(a) Let the binary linear code C be generated by the next matrix.

0 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1

Find its dimension. Does C correct all single errors? Double errors? If not, find a noncorrectable double error and its coset leader.

(b) The finite field \mathbb{F}_9 can be constructed by adding a root α of $f(x) = x^2 - x - 1$ to \mathbb{F}_3 . Complete the following table

Power of α	vector in the basis $1, \alpha$	vector in the basis α, α^3	power of α^3
$-\infty$			
0		:	:
1			
•			

(c) Which of the following pairs of elements of \mathbb{F}_9

$$(1, \alpha), (1, \alpha^2), (1, \alpha^3), (1, \alpha^4), (1, \alpha^5), (1, \alpha^6), (1, \alpha^7), (1, \alpha^8), (\alpha, \alpha^2), (\alpha, \alpha^3), (\alpha, \alpha^4) (\alpha, \alpha^5), (\alpha, \alpha^6), (\alpha, \alpha^7), (\alpha^2, \alpha^3), (\alpha^2, \alpha^6), (\alpha^3, \alpha^4)$$

form a basis of \mathbb{F}_9 over \mathbb{F}_3 ?

(d) Let $\mathscr{P} = (1, \alpha, \alpha^2, \dots, \alpha^7)$ and let \mathcal{R} be an [8,3] RS code over \mathbb{F}_9 with the defining set \mathscr{P} . Find a codeword of weight equal to the minimum distance of \mathcal{R} .

(e) What is the coset leader of the vector $\boldsymbol{y} = (1, \alpha, \alpha^4, \alpha^3, \alpha^4, \alpha^5, \alpha^2, \alpha^7)$ with respect to the code \mathcal{R} ?

(f) Decode the vector $\boldsymbol{y} = (0, \alpha^7, \alpha^4, \alpha^5, 1, \alpha^6, \alpha^3, \alpha^2)$ with the code \mathcal{R} .

(g) Let $x \in \mathbb{F}_{p^m}$. Prove that $z(x) = x + x^p + x^{p^2} \cdots + x^{p^{m-1}} \in \mathbb{F}_p$ and that the number of different x for which z(x) = 0 equals p^{m-1} .