All answers should be accompanied with proofs or sufficient explanation. Intermediate calculations should be shown.

10 points for each of the questions.
(a) Let the binary linear code \mathcal{C} be generated by the next matrix.

0	0	0	1	1	1	0	0	1
0	0	1	0	0	0	1	1	0
1	1	0	0	0	1	1	0	1

Find its dimension. Does \mathcal{C} correct all single errors? Double errors? If not, find a noncorrectable double error and its coset leader.
(b) The finite field \mathbb{F}_{9} can be constructed by adding a root α of $f(x)=x^{2}-x-1$ to \mathbb{F}_{3}. Complete the following table

Power of α	vector in the basis $1, \alpha$	vector in the basis α, α^{3}	power of α^{3}
$-\infty$	\vdots	\vdots	\vdots
0			
1			
\vdots			

(c) Which of the following pairs of elements of \mathbb{F}_{9}

$$
\begin{gathered}
(1, \alpha),\left(1, \alpha^{2}\right),\left(1, \alpha^{3}\right),\left(1, \alpha^{4}\right),\left(1, \alpha^{5}\right),\left(1, \alpha^{6}\right),\left(1, \alpha^{7}\right),\left(1, \alpha^{8}\right),\left(\alpha, \alpha^{2}\right),\left(\alpha, \alpha^{3}\right),\left(\alpha, \alpha^{4}\right) \\
\left(\alpha, \alpha^{5}\right),\left(\alpha, \alpha^{6}\right),\left(\alpha, \alpha^{7}\right),\left(\alpha^{2}, \alpha^{3}\right),\left(\alpha^{2}, \alpha^{6}\right),\left(\alpha^{3}, \alpha^{4}\right)
\end{gathered}
$$

form a basis of \mathbb{F}_{9} over \mathbb{F}_{3} ?
(d) Let $\mathscr{P}=\left(1, \alpha, \alpha^{2}, \ldots, \alpha^{7}\right)$ and let \mathcal{R} be an $[8,3] \operatorname{RS}$ code over \mathbb{F}_{9} with the defining set \mathscr{P}. Find a codeword of weight equal to the minimum distance of \mathcal{R}.
(e) What is the coset leader of the vector $\boldsymbol{y}=\left(1, \alpha, \alpha^{4}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{2}, \alpha^{7}\right)$ with respect to the code \mathcal{R} ?
(f) Decode the vector $\boldsymbol{y}=\left(0, \alpha^{7}, \alpha^{4}, \alpha^{5}, 1, \alpha^{6}, \alpha^{3}, \alpha^{2}\right)$ with the code \mathcal{R}.
(g) Let $x \in \mathbb{F}_{p^{m}}$. Prove that $z(x)=x+x^{p}+x^{p^{2}} \cdots+x^{p^{m-1}} \in \mathbb{F}_{p}$ and that the number of different x for which $z(x)=0$ equals p^{m-1}.

