All answers should be accompanied with proofs or sufficient explanation. Intermediate calculations should be shown.

In the problems you may use any representation of \mathbf{F}_{11} in the calculations. The final answers should be written using integers mod 11.
(a). (10pt). Prove that $\alpha=2$ is a primitive element of $F=\mathbf{F}_{11}$.
(b). (10pts). Let C be a $[10,6, d]$ RS code over F. Write out a parity-check H matrix of C.
(c). (20pt) Reduce H to a systematic form $H^{\prime}=\left[I_{4} \mid A\right]$.

Help: $\left[\begin{array}{llll}1 & 2 & 4 & 8 \\ 1 & 4 & 5 & 9 \\ 1 & 8 & 9 & 6 \\ 1 & 5 & 3 & 4\end{array}\right]^{-1}=\left[\begin{array}{cccc}2 & 1 & 8 & 1 \\ 6 & 0 & 10 & 6 \\ 2 & 5 & 0 & 4 \\ 7 & 7 & 2 & 6\end{array}\right]$ (mod 11). (If you find no use of this equality, ignore it.)
(d). (30pt) Write out a generator matrix of C in a systematic form
(Use caution: Lecture 2 applies to binary codes only)
(e). (10pt) Using H^{\prime}, find the codeword \boldsymbol{c}_{0} that corresponds to the message symbols ($1,1,1,1,1,1$).
(f). (10pt) What is the polynomial f such that $\operatorname{eval}(f)=\boldsymbol{c}_{0}$?
(g). (15pt) Is is true that $\left(c_{0}, c_{1}, \ldots, c_{9}\right) \in C$ implies that $\left(c_{9}, c_{1}, c_{2}, \ldots, c_{8}\right) \in C$?
(h). (20pt) Let $\boldsymbol{c} \in C$ be a vector of weight 5 . Prove that if $\boldsymbol{c}^{\prime} \in C$ is such that $\operatorname{supp}(\boldsymbol{c})=\operatorname{supp}\left(\boldsymbol{c}^{\prime}\right)$ then $\boldsymbol{c}^{\prime}=a \boldsymbol{c}$ where $a \in F \backslash\{0\}$ is some constant.
(i). (15pt) Using problem 8 , compute directly, with proof, the number of vectors of weight 5 in C (your answer should be a number, not an expression).
(j). (30pt) Let $\boldsymbol{r}=(3,0,0,10,5,4,0,6,10,0)$ be a received vector. Perform the Peterson-Gorenstein Zierler algorithm to determine the number of errors and to decode the vector.
(k). (10pt) Explain how to find the polynomial f such that eval (f) equals the decoded codeword from problem 10.
(l). (10pt) If time left, invent a nice problem and solve it.

