ENEE626. Midterm examination, 10/27/2005

Solutions of problems

Problem 1. (6pts, 2 each subproblem) Consider a ternary linear code \mathcal{C} with the generator matrix

$$
G=\left[\begin{array}{llllll}
0 & 0 & 1 & 1 & 2 & 0 \\
1 & 0 & 0 & 2 & 0 & 2 \\
0 & 1 & 0 & 1 & 1 & 2
\end{array}\right]
$$

(1) Find a parity-check matrix of \mathcal{C}

For instance,

$$
H=\left[\begin{array}{llllll}
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(2) What are the parameters $[n, k, d]$ of the code \mathcal{C} ?
[6,3,3] because, for instance, 200101 is a codeword and no two columns of H are proportional.
(3) How many cosets does \mathcal{C} have? Name 10 coset leaders.

It has $3^{n-k}=27$ cosets. Since $d(\mathcal{C})=3$, all 12 vectors of weight 1 are coset leaders.
Problem 2. (14 pts, 2 each subproblem) Let $f(x)=x^{4}+x^{3}+1$ and let α be a root of f.
(1) Is f a primitive polynomial?

Yes because we have shown in class that $f^{*}(x)=x^{4}+x+1$ is primitive, so if α is a root of f then $\alpha=\gamma^{-1}$ where γ is a root of $f^{*}(x)$.

Alternatively, let α be a root of f. If $\alpha \neq 1, \alpha^{3} \neq 1$, and $\alpha^{5} \neq 1$, then $\operatorname{ord}(\alpha)=15$, but the first two are trivial, and for the third, compute

$$
\begin{gathered}
\alpha^{4}=\alpha^{3}+1 \\
\alpha^{5}=\alpha^{3}+\alpha+1 \neq 1
\end{gathered}
$$

For future use also compute $\alpha^{6}=\alpha^{3}+\alpha^{2}+\alpha+1, \alpha^{7}=\alpha^{2}+\alpha+1, \alpha^{8}=\alpha^{3}+\alpha^{2}+\alpha, \alpha^{9}=$ $\alpha^{2}+1, \alpha^{10}=\alpha^{3}+\alpha, \alpha^{11}=\alpha^{3}+\alpha^{2}+1, \alpha^{12}=\alpha+1, \alpha^{13}=\alpha^{2}+\alpha, \alpha^{14}=\alpha^{3}+\alpha^{2}, \alpha^{15}=1$.
(2) Let $\mathbb{F}_{4}=\left\{0,1, \omega, \omega^{2}\right\}$ be the field of 4 elements. Is it a subfield of \mathbb{F}_{16} ? Write out the addition table of \mathbb{F}_{4}.

It is a subfield because $2^{2}-1 \mid 2^{4}-1$. The nontrivial entries of the addition table are obtained from the relation $\omega+1=\omega^{2}$.
(3) Is $(1, \omega)$ a basis of \mathbb{F}_{16} over \mathbb{F}_{4} ?

No because $1=\omega^{2} \omega$, so 1 and ω are proportional.
(4) Let $g(x)=x^{2}+\omega x+1$. Is it irreducible over \mathbb{F}_{4} ?
$g(x)$ has no zeros in \mathbb{F}_{4} so it does not have linear factors. Thus, it is irreducible.
(5) Let β be a root of $g(x)$. Find the order of β. Is it primitive?

Compute $\beta^{3}=\omega \beta^{2}+\beta=\omega \beta+\omega, \beta^{4}=\omega \beta^{2}+\omega \beta=\beta+\omega, \beta^{5}=\beta^{2}+\omega \beta=1$. Thus $\operatorname{ord}(\beta)=5$, so it is not primitive.
(6) Express β as a power of α.
β is an element of order 5 , so we should look among $\alpha^{3}, \alpha^{6}, \alpha^{9}, \alpha^{12}$. We claim that $\beta=\alpha^{3}$ because

$$
g\left(\alpha^{3}\right)=\alpha^{6}+\omega \alpha^{3}+1=\alpha^{6}+\alpha^{8}+1=0 .
$$

(7) Find the representation of α^{7} in the basis $(1, \beta)$ over \mathbb{F}_{4}.

Since $\omega=\alpha^{5}=\beta+\alpha+1$, we obtain $\alpha=\omega+\beta+1=\omega^{2}+\beta$. Next,

$$
\alpha^{7}=\alpha^{6} \alpha=\beta^{2} \alpha=(\omega \beta+1)\left(\omega^{2}+\beta\right)=\omega^{2} \beta+1
$$

Thus, the coordinates of α^{7} are $1, \omega^{2}$.
Problem 3. (8 pts each, 2 each subproblem) The polynomial $x^{15}+1$ factors over F_{2} as follows:

$$
x^{15}+1=(x+1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
$$

Let \mathcal{C} be a $[15, k, d]$ binary cyclic code \mathcal{C} of length 15 generated by $g=(x+1)\left(x^{4}+x^{3}+1\right)$.
(1) What are k and $d_{B C H}$?
$\operatorname{dim}(\mathcal{C})=n-\operatorname{deg} g=10$.
The problem does not state what was the polynomial used to generate \mathbb{F}_{16}. Because of uniqueness of \mathbb{F}_{16} is does not matter for the solution, but for definiteness let us assume that the primitive polynomial was $x^{4}+x+1$ and denote its root by α.

Then $g(x)=m_{0} m_{7}$, so the zeros of \mathcal{C} are $(0,7,11,13,14)=(0,-8,-4,-2,-1)$. Among the exponents of the zeros of \mathcal{C} we find $-2,-1,0$, so $d_{B C H}=4$.

We could have also taken $x^{4}+x^{3}+1$ as the polynomial used to construct the field. Denoting its root by $\beta=\alpha^{-1}$ we would have found the zeros $(0,1,2,4,8)$, reciprocal to the ones found above.
(2) Is $c(x)=x^{10}+x^{9}+x^{7}+x^{3}$ a codeword in \mathcal{C} ? Is $f(x)=c(x)+1$?
$c(1)=0$ and $c\left(\alpha^{7}\right)=\alpha^{10}+\alpha^{3}+\alpha^{4}+\alpha^{6}=\alpha^{6}\left(\alpha^{4}+1\right)+\alpha^{4}+\alpha^{3}=\alpha^{7}+\alpha^{4}+\alpha^{3}=$ $\alpha^{3}(\alpha+1)+\alpha^{4}+\alpha^{3}=0$ using $\alpha^{4}=\alpha+1$, so $c \in \mathcal{C}$. The vector f is of odd weight, so $f(1) \neq 0$, $f \notin \mathcal{C}$.
(3) What is the generator polynomial of \mathcal{C}^{\perp} ?

We have $g_{\mathcal{C}^{\perp}}(x)=h^{*}(x)$, where $h(x)=m_{1} m_{3} m_{5}=\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)$. Explicitly,

$$
g_{\mathcal{C}^{\perp}}(x)=m_{-1} m_{-3} m_{-5}=m_{3} m_{5} m_{7}=x^{10}+x^{9}+x^{8}+x^{6}++x^{5}+x^{2}+x+1 .
$$

(4) What is $d_{B C H}\left(\mathcal{C}^{\perp}\right)$?

The zeros of \mathcal{C}^{\perp} have the exponents $(-1,-2,-4,-8 ;-3,-6,-9,-12 ;-5,-10)$, so the BCH bound gives $d_{B C H}\left(\mathcal{C}^{\perp}\right)=7$.

