ENEE626. Problem set 1. Due in class on 9/24/15.

1. Write out the parameters $[n, k, d]$, a generator and a parity-check matrix for the binary linear codes $\mathcal{C}_{1}=\left\{0^{n}\right\}$ (one vector), $\mathcal{C}_{2}=F$ (the entire space), $\mathcal{C}_{3}=\left\{0^{n}, 1^{n}\right\}$ (the repetition code), $\mathcal{C}_{4}=\{$ all even-weight vectors $\}$ (the single parity-check code).
2. Consider a binary linear code \mathcal{C} spanned by the rows of the matrix

$$
\begin{aligned}
& 000110001 \\
& 110001000 \\
& 111011110
\end{aligned}
$$

(a) Find the parameters (length, dimension, and distance) of the code \mathcal{C}.
(b) Represent the code in a systematic form so that the message bits appear in the coordinates 2,3 , and 5 of the codeword.
(c) Find a parity-check matrix H of the code \mathcal{C}.
(d) Find the parameters of the code \mathcal{C}^{\perp} spanned by the rows of H.
3. Consider a binary linear code \mathcal{C} with generator matrix

$$
\begin{aligned}
& 101010 \\
& 010011 \\
& 100101
\end{aligned}
$$

Write out the standard array for the code \mathcal{C}. Identify all correctable and non-correctable errors (explain your conclusions). What is the distance of \mathcal{C} ?
4. Let G and H be a generator and a parity-check matrix of a binary code \mathcal{C} of length n and dimension k. Let $E \subset\{1,2, \ldots, n\},|E| \leq k$. Recall that $G(E)$ denotes the submatrix of G formed of the columns indexed by E.
(a) Prove that if $\operatorname{rk}(G(E))=|E|$ then $\operatorname{rk}\left(H\left(E^{c}\right)\right)=n-k$ (i.e., that E^{c} contains a check set of \mathcal{C}).
(b) Prove that $k-\operatorname{rk}(G(E))=\left|E^{c}\right|-\operatorname{rk}\left(H\left(E^{c}\right)\right)$.
5. Let $D=\mathcal{H}_{4}$ be the binary Hamming code of length 15 , i.e., the code whose parity-check matrix is formed all the 15 nonzero columns of length 4, taken in the lexicographic order (from 0001 to 1111).
(a) Find the dimension k and distance d of D (explain your answers).
(b) Write out a generator matrix of D such that the message bits are bits $1,2, \ldots, k$.
(c) You are given a received vector $z=0000000 * 0000111$ where $*$ stands for erasure. Perform maximum likelihood decoding of z with the code D. What is/are the candidate codeword(s)? Explain your answer.
6. Binomial coefficients. Below all the parameters are whole numbers. Prove that
(i) $\binom{n}{k}=\binom{n}{n-k}$;
(ii) $\binom{n-1}{k}+\binom{n-1}{k-1}=\binom{n}{k}$;
(viii) $\sum_{j=0}^{(r-1) / 2}(-1)^{j}\binom{r}{j}(r-2 j)=0(r$ odd $)$;
(iii) $(n-k)\binom{n}{k}=n\binom{n-1}{k}$;
(iv) $\sum_{k \text { even }}\binom{n}{k}=\sum_{k \text { odd }}\binom{n}{k}=2^{n-1}$;
(viii) $\sum_{i}(-1)^{i}\binom{p}{i}\binom{i}{s}=(-1)^{p} \delta_{p, s}$
(ix) $\sum_{k}\binom{r}{m+k}\binom{s}{n-k}=\binom{r+s}{m+n}$.
(v) $\sum_{k}(-1)^{k}\binom{n}{k}=0$;
(x) $\sum_{i} i\binom{n}{i}=n 2^{n-1}$
(vi) $\sum_{0 \leq k \leq n}\binom{k}{m}=\binom{n+1}{m+1}$;
(xi) $\sum_{i} i^{2}\binom{n}{i}=\frac{n(n+1)}{4} 2^{n}$.
(vii) $\binom{r}{j}\binom{j}{s}=\binom{r}{s}\binom{r-s}{j-s}$;
(xii) $\sum_{i=0}^{m}(-1)^{i}\binom{n}{i}=(-1)^{m}\binom{n-1}{m}$.

