
ENEE626. Problem set 1. Due in class on 9/24/15.

1. Write out the parameters [n, k, d], a generator and a parity-check matrix for the binary linear codes C1 = {0n} (one
vector), C2 = F (the entire space), C3 = {0n, 1n} (the repetition code), C4 = {all even-weight vectors} (the single
parity-check code).

2. Consider a binary linear code C spanned by the rows of the matrix
000110001
110001000
111011110

(a) Find the parameters (length, dimension, and distance) of the code C.

(b) Represent the code in a systematic form so that the message bits appear in the coordinates 2,3, and 5 of the
codeword.

(c) Find a parity-check matrix H of the code C.

(d) Find the parameters of the code C⊥ spanned by the rows of H .

3. Consider a binary linear code C with generator matrix
101010
010011
100101

Write out the standard array for the code C. Identify all correctable and non-correctable errors (explain your conclu-
sions). What is the distance of C?

4. Let G and H be a generator and a parity-check matrix of a binary code C of length n and dimension k. Let
E ⊂ {1, 2, . . . , n}, |E| ≤ k. Recall that G(E) denotes the submatrix of G formed of the columns indexed by E.

(a) Prove that if rk(G(E)) = |E| then rk(H(Ec)) = n− k (i.e., that Ec contains a check set of C).

(b) Prove that k − rk(G(E)) = |Ec| − rk(H(Ec)).

5. Let D = H4 be the binary Hamming code of length 15, i.e., the code whose parity-check matrix is formed all the
15 nonzero columns of length 4, taken in the lexicographic order (from 0001 to 1111).

(a) Find the dimension k and distance d of D (explain your answers).

(b) Write out a generator matrix of D such that the message bits are bits 1, 2, . . . , k.

(c) You are given a received vector z = 0000000 ∗ 0000111 where ∗ stands for erasure. Perform maximum
likelihood decoding of z with the code D. What is/are the candidate codeword(s)? Explain your answer.

6. Binomial coefficients. Below all the parameters are whole numbers. Prove that
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