ENEE626. Final examination

Instructor: A. Barg

Your paper is due by 5pm on **Friday December 17 2010** in my office, AV Williams Bldg. Rm 2361. If I am absent, please slide your paper under the door.

Please be concise in your exam paper!

1.(10pt) (a) Find a 7×4 right inverse A of the matrix G over \mathbb{F}_2 :

G =	Γ1	1	0	1	0	0	0
	0	1	1	0	1	0	0
	0	0	1	1	0	1	0
	0	0	0	1	1	0	1

(b) Using the matrix A find the message m if mG = 1000110.

2. Let α be a primitive element of the field \mathbb{F}_{16} . Let $\mathscr{P} = (\alpha^4, \alpha^6, \alpha^7, \alpha^8, \alpha^9, \alpha^{10}, \alpha^{11}, \alpha^{12}, \alpha^{13}, \alpha^{14})$ be the defining set of an RS code \mathcal{C} of dimension k = 4.

(a) (3pt) What are the parameters (n, k, d) of the code?

(b) (10pt) Decode the vector $\boldsymbol{y} = (\alpha, \alpha^{12}, \alpha^7, 0, \alpha^{13}, \alpha^6, \alpha^9, \alpha^7, \alpha^7, \alpha^2)$ with the code C (use any decoding algorithm you know; show the steps).

3. Let G be a binary $k \times n$ matrix whose entries are chosen from \mathbb{F}_2 independently with probabilities P(1) = r, P(0) = 1 - r. Let C be the code spanned by the rows of the matrix G and let \mathscr{C} be the ensemble of random binary codes arising in this way. The number A_w of vectors of weight $w, w = 0, 1, \ldots, n$ in C is a random variable.

(a) (10pt) Let r = 1/2. Find EA_w (begin by considering the codeword $\boldsymbol{x} = \boldsymbol{m}G$ obtained after you fix a binary message vector $\boldsymbol{m} \in \mathbb{F}_2^k$. Argue about the probability that $wt(\boldsymbol{x}) = w$.).

(b) (8pt) Let 0 < r < 1. Find EA_w (argue about the probability that $x_i = 1$ where $\boldsymbol{x} = (x_1, \ldots, x_n)$ is as above in part (a). Note that this probability will depend on wt(\boldsymbol{m}).).

4. In this problem you are asked to give proofs of some results stated in class.

(a) (10 pt) Find the 2nd generalized Hamming weight d_2 of the simplex code $S_m[2^m - 1, m, 2^{m-1}]$.

(b) (8 pt) Find the third generalized Hamming weight d_3 of S_m .

5. (10pt) Consider the network G with receivers R_1, R_2, R_3, R_4 shown in the figure.

What is the MinCut from S to R_1, R_2, R_3, R_4 ?

Find the smallest q such that there exists a linear multicast network coding scheme that can transmit 2 packets to the receivers. Construct the coding scheme by writing out the local and global encoding kernels for each node resp. edge of the network.

