ENEE626. Final examination, 12/20/2008 (max 70pt)
Instructor: A. Barg

1. Let G be a matrix over \mathbb{F}_{2} given by $G=\left[\begin{array}{llllllllll}0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}\right]$.
(a) (3pt) Find the parameters $[n, k, d]$ of the binary linear code \mathscr{C} generated by G. Find k coordinates that form an information set. Find k coordinates that do not form an information set.
(b) (5pt) How was this code constructed? (Hint: Relate it to some familiar code).
(c) $(5 \mathrm{pt})$ Relying on the values n, k, d found in part (a) prove that \mathscr{C} is optimal (i.e., that there is no $[n, k, d+1]$ code).
(d) (5 pt) Consider the $\left(2^{n-k} \times n\right)$ matrix M formed by the codewords of the code $\mathscr{C}{ }^{\perp}$. Let M^{\prime} be the matrix formed by columns $2,3,5$ of M. How many times does the vector 001 appear as a row of M^{\prime} ? The same question for the vector 011.
(e) $(7 \mathrm{pt})$ Generalize the result of part (d) for an arbitrary $[n, k]$ linear code \mathscr{D} over \mathbb{F}_{q} such that $\mathrm{d}\left(\mathscr{D}^{\perp}\right)=$ d^{\perp}. (Give a precise statement and a proof.)
2. (5pt) Factorize the polynomial $x^{20}+x^{12}+x^{4}+1$ over \mathbb{F}_{2}.
3. (5pt) Consider a binary cyclic code \mathscr{T} of length $n=17$ with zero α, a primitive root of unity mod n. Find the BCH designed distance of the code \mathscr{T}.
4. Consider a linear code \mathscr{R} whose $(n-k) \times n$ parity-check matrix H is selected randomly from \mathbb{F}_{q} (every element of H is chosen from \mathbb{F}_{q} with uniform probability, and the elements are independent). Let X_{w} be the random number of vectors of weight w in \mathscr{R}.
(a) $(7 \mathrm{pt})$ Compute $\mathbb{E} X_{w}, \operatorname{Var}\left(X_{w}\right)$.
(b) (5pt) Based on part (a), show that there exist linear q-ary codes with weight distribution

$$
A_{w} \leq n^{2}\binom{n}{w}(q-1)^{w} q^{k-n}
$$

(c) $(5 \mathrm{pt})$ Derive an asymptotic version of the GV bound for the q-ary case relying on the estimate in part (b)
5. Consider a code $\mathscr{P}=B \otimes B$ where B is a binary $[n=k+1, k, 2]$ single parity-check code, $k \geq 2$. We assume systematic encoding with the message symbols occupying the first k columns in the first k rows.
(a) (3pt) Let

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 k} & a_{1, k+1} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{k 1} & a_{k 2} & \cdots & a_{k k} & a_{k, k+1} \\
a_{k+1,1} & a_{k+1,2} & \cdots & a_{k+1, k} & a_{k+1, k+1}
\end{array}\right)
$$

be a codeword of \mathscr{P}. Prove directly that $a_{k+1, k+1}=\sum_{i=1}^{k} a_{k+1, i}=\sum_{i=1}^{k} a_{i, k+1}$.
(b) (5pt) Give an explicit procedure that corrects one error (answers such as "finding the closest codeword" or "the min-sum algorithm will correct one error" are not acceptable).
(c) (5pt) Prove directly (without appealing to the minimum distance) that the code \mathscr{P} detects two errors. Are there combinations of two errors that the code will correct?
6. (5pt) Let \mathscr{R} be a 16 -ary cyclic RS code of length $n=15$ with generator polynomial

$$
g(x)=\left(x+\alpha^{7}\right)\left(x+\alpha^{8}\right)\left(x+\alpha^{9}\right)
$$

where α is a primitive element of \mathbb{F}_{16}. Write out a generator matrix and a parity-check matrix of \mathscr{R}.

